7 research outputs found

    An Equation of State of a Carbon-Fibre Epoxy Composite under Shock Loading

    Full text link
    An anisotropic equation of state (EOS) is proposed for the accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states for a shocked carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a generalised decomposition of a stress tensor [Int. J. Plasticity \textbf{24}, 140 (2008)], represents a mathematical and physical generalisation of the Mie-Gr\"{u}neisen EOS for isotropic material and reduces to this equation in the limit of isotropy. Although a linear relation between the generalised anisotropic bulk shock velocity UsAU^{A}_{s} and particle velocity upu_{p} was adequate in the through-thickness orientation, damage softening process produces discontinuities both in value and slope in the UsAU^{A}_{s}-upu_{p} relation. Therefore, the two-wave structure (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The linear relationship UsAU^{A}_{s}-upu_{p} over the range of measurements corresponding to non-linear anisotropic elastic wave shows a value of c0Ac^{A}_{0} (the intercept of the UsAU^{A}_{s}-upu_{p} curve) that is in the range between first and second generalised anisotropic bulk speed of sound [Eur. Phys. J. B \textbf{64}, 159 (2008)]. An analytical calculation showed that Hugoniot Stress Levels (HELs) in different directions for a CFC composite subject to the two-wave structure (non-linear anisotropic elastic and isotropic elastic waves) agree with experimental measurements at low and at high shock intensities. The results are presented, discussed and future studies are outlined.Comment: 12 pages, 9 figure

    Glass-epoxy composite behaviour under shock loading

    No full text
    Shock compressibility and sound velocity in commercial fibre-glass at pressures up to 22GPa were studied using manganin gauges. Free surface wave profiles were measured by Doppler velocity interferometry at pressures of about 1GPa. Material spall strength and viscosity were evaluated
    corecore