30 research outputs found

    Impact of a tobacco smoke on a metabolism of an organ culture of bovine lenses and potential protection by antioxidants

    No full text
    Smoke from cigarette smoking (CS) has been proposed to be a major environmental risk factor for a variety of human diseases and was implicated also in cataract, an eye lens pacification, which is a major cause of blindness. We have undertaken a study to investigate the effect of smoke on the physiological integrity and metabolism of organ cultured lenses. Lenses in organ culture are metabolically active and have functional defense systems, thus they pr ovide an appropriate model for studying the effects of smoke. Also possible protective action of N-acetyl L-cysteine (NAC) which is a precursor of glutathione and the iron chelator Deferoxamine (DFO), was estimated as potential protective agents against cataract.ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π΄Ρ‹ΠΌ ΠΎΡ‚ курСния сигарСт (КБ) являСтся основным экологичСским Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ риска для развития мноТСства Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚Ρ‹, помутнСния хрусталика Π³Π»Π°Π·Π°, Ρ‡Ρ‚ΠΎ являСтся Π³Π»Π°Π²Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ слСпоты. Π‘Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС для изучСния воздСйствия Π΄Ρ‹ΠΌΠ° Π½Π° Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡ Π΅ΡΠΊΡƒΡŽ Ρ†Π΅Π»ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΎΡ€Π³Π°Π½Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ хрусталиков Π³Π»Π°Π·Π°. Π₯русталики Π³Π»Π°Π·Π° Π² ΠΎΡ€Π³Π°Π½Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ мСтаболичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ систСмы Π·Π°Ρ‰ΠΈΡ‚Ρ‹, Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ модСлью для изучСния воздСйствия Π΄Ρ‹ΠΌΠ°. Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»ΠΎ ΠΎΡ†Π΅Π½Π΅Π½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠ΅ дСйствиС N-Π°Ρ†Π΅Ρ‚ΠΈΠ» L-цистСина (NAC), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся исходным вСщСством для Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° ΠΈ Ρ…Π΅Π»Π°Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π° ΠΆΠ΅Π»Π΅Π·Π° дСфСроксамина (DFO) ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Ρ… вСщСств ΠΏΡ€ΠΎΡ‚ΠΈΠ² ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚Ρ‹.ΠŸΠ΅Ρ€Π΅Π΄Π±Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ, Ρ‰ΠΎ Π΄ΠΈΠΌ Π²Ρ–Π΄ паління сигарСт (ПБ) Ρ” основним Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Ρ€ΠΈΠ·ΠΈΠΊΡƒ для розвинСння Π±Π°Π³Π°Ρ‚ΡŒΠΎΡ… Ρ…Π²ΠΎΡ€ΠΎΠ± людини Ρ– ΠΌΠΎΠΆΠ΅ Ρ‚Π°ΠΊΠΎΠΆ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ‚ΠΈ розвинСння ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΈ, помутніння ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΠ° ΠΎΠΊΠ°, Ρ‰ΠΎ Ρ” головною ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΡŽ сліпоти. Π‘ΡƒΠ»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ дослідТСння для вивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΄ΠΈΠΌΡƒ Π½Π° Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Ρ†Ρ–Π»Ρ–ΡΠ½Ρ–ΡΡ‚ΡŒ Ρ– ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌ ΠΎΡ€Π³Π°Π½Π½ΠΎΡ— ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΡ–Π² ΠΎΠΊΠ°. ΠšΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΠΈ ΠΎΠΊΠ° Π² ΠΎΡ€Π³Π°Π½Π½Ρ–ΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ– ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ‚Π° ΠΌΠ°ΡŽΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρ– систСми захисту, Ρ‚Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ Π²ΠΎΠ½ΠΈ Ρ” ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡŽ модСллю для вивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΄ΠΈΠΌΡƒ. Π’Π°ΠΊΠΎΠΆ Π±ΡƒΠ»Π° ΠΎΡ†Ρ–Π½Π΅Π½Π° ΠΌΠΎΠΆΠ»ΠΈΠ²Π° захисна дія N β€” Π°Ρ†Π΅Ρ‚ΠΈΠ» β€” L- цистСїна (NAC), ΠΊΠΎΡ‚Ρ€ΠΈΠΉ Ρ” Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΡŽ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΎΡŽ для Π³Π»ΡƒΡ‚Π°Ρ‚Ρ–ΠΎΠ½Π° Ρ‚Π° Ρ…Π΅Π»Π°Ρ‚ΠΈΡ€ΡƒΡŽΡ‡ΠΎΠ³ΠΎ Π°Π³Π΅Π½Ρ‚Π° Π·Π°Π»Ρ–Π·Π° дСфСроксаміна (DFO) як ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΈΡ… захисних Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ ΠΏΡ€ΠΎΡ‚ΠΈ ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΈ

    The effects of antioxidants on diabetic damage with a tobacco smoke in bovine lenses

    No full text
    Investigated the mechanisms involved in the effects of preventing cataract and cigarette smoking (CS) when exposed to the lens antioxidants. Bovine lenses were removed in organ culture for 12 days, exposed to glucose 450 mg % for antioxidants including-Desferioxamine (DFO) and cysteine N-acetyl-L-(NAC). Treated lenses were 4 days in culture medium saturated with cigarette smoke daily dose at 500 psi. The use of laser-lens optical quality was assessed daily. At the end of the incubation period, lenses were analyzed using an inverted microscopy as epithelial layer was used for histochemical assessment method Einarson nucleic acids -RNA-DNA staining. Reactive Oxygen Species (ROS) were evaluated C6827, to measure the level of cellular oxidation in the epithelial cells of the lens relative to the control cultures by fluorescence microscopy. High glucose with a smoke causes optical and morphological changes in epithelial cells (hypertrophy, hyperplasia). Antioxidants reduce the damage caused by high glucose and CS, to protect the lens from high glucose, reduce cell damage, prevent the increased activity of ROS. NAC protected the lens from damage high glucose better than DFO. We suggest that NAC can serve as an effective advocate for the lens of the eye against damage from smoking diabetics.ИсслСдовались ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дСйствия антиоксидантов Π½Π° ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ развития ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚Ρ‹ Ρƒ курящих. Π‘Ρ‹Ρ‡ΡŒΠΈ хрусталики Π±Ρ‹Π»ΠΈ Π²Ρ‹Π΄Π΅Ρ€ΠΆΠ°Π½Ρ‹ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ срСдС, содСрТащСй 450 ΠΌΠ³ Π³Π»ΡŽΠΊΠΎΠ·Ρ‹ Π½Π° 100 Π³ раствора ΠΈ с антиокислитСлями β€” дСсфСроксамином (DFO) ΠΈ N-Π°Ρ†Π΅Ρ‚ΠΈΠ»-L-цистСином (NAC) Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 12 Π΄Π½Π΅ΠΉ. Π’Π°ΠΊ ΠΆΠ΅ 4 дня хрусталики ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΈΡΡŒ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ срСдС, насыщаСмой папиросным Π΄Ρ‹ΠΌΠΎΠΌ, СТСднСвная Π΄ΠΎΠ·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ составляла 500 psi. ΠžΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ качСство хрусталиков Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΎΡΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ установки. Π’ ΠΊΠΎΠ½Ρ†Π΅ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° хрусталики Π±Ρ‹Π»ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ инвСрсионной микроскопии, a ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ слой использовался для гистохимичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΡ†Π΅Π½ΠΊΠΈ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹x кислот ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π”ΠΠš-РНК ΠΏo ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Эйнарсона. АктивныС Ρ„ΠΎΡ€ΠΌΡ‹ кислорода (ROS) Π±Ρ‹Π»ΠΈ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ Π² ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… хрусталика с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„Π»yорСсцСнтной микроскопии для измСрСния уровня ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ окислСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€. Высокая Π΄ΠΎΠ·Π° Π³Π»ΡŽΠΊΠΎΠ·Ρ‹ с Π΄Ρ‹ΠΌΠΎΠΌ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ оптичСскиС ΠΈ морфологичСскиС измСнСния Π² ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… (гипСртрофия, гипСрплазия) ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ Ρ„Π»yΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ. Антиоксиданты ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ это воздСйствиС, ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ количСство ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°ΡŽΡ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½Π½ΡƒΡŽ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ROS. NAC Π·Π°Ρ‰ΠΈΡ‚ΠΈΠ» Π»ΠΈΠ½Π·Ρ‹ ΠΎΡ‚ поврСТдСния нСсколько Π»ΡƒΡ‡ΡˆΠ΅, Ρ‡Π΅ΠΌ DFO. ΠœΡ‹ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ антиокислитСли ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ эффСктивным срСдством Π·Π°Ρ‰ΠΈΡ‚Ρ‹ хрусталика Π³Π»Π°Π·Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² поврСТдСния Ρƒ курящих Π΄ΠΈΠ°Π±Π΅Ρ‚ΠΈΠΊΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вСщСств Π² ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚Ρ‹ y ΠΊΡƒΡ€ΠΈΠ»ΡŒΡ‰ΠΈΠΊoΠ² ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ β€” ΠΎΡ‡Π΅Π½ΡŒ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ, которая ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ исслСдованной Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎ Π² Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ.ДослідТувалися ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ Π΄Ρ–Ρ— антиоксидантів Π½Π° запобігання Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΈ Ρƒ курящих. Π‘ΠΈΡ‡Π°Ρ‡Ρ– ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΠΈ Π±ΡƒΠ»ΠΈ Π²ΠΈΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΌΡƒ сСрСдовищі, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ 450 ΠΌΠ³ глюкози Π½Π° 100 Π³ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ Ρ– Π· Π°Π½Ρ‚ΠΈΠΎΠΊΠΈΡΠ»ΡŽΠ²Π°Ρ‡Π°ΠΌΠΈ - дСсфСроксаміном (DFO) Ρ– N-Π°Ρ†Π΅Ρ‚ΠΈΠ»-L-цистСїном (NAC) протягом 12 Π΄Π½Ρ–Π². Π’Π°ΠΊ само 4 дня Π»Ρ–Π½Π·ΠΈ містилися Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΡ— сСрСдовищі, насичує Ρ†ΠΈΠ³Π°Ρ€ΠΊΠΎΠ²ΠΈΠΌ Π΄ΠΈΠΌΠΎΠΌ, Ρ‰ΠΎΠ΄Π΅Π½Π½Π° Π΄ΠΎΠ·Π° якого становила 500 psi. ΠžΠΏΡ‚ΠΈΡ‡Π½Π° ΡΠΊΡ–ΡΡ‚ΡŒ ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΡ–Π² щодня ΠΎΡ†Ρ–Π½ΡŽΠ²Π°Π»ΠΎΡΡ Π·Π° допомогою Π»Π°Π·Π΅Ρ€Π½ΠΎΡ— установки. Наприкінці Ρ–Π½ΠΊΡƒΠ±Π°Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄Ρƒ ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΠΈ Π±ΡƒΠ»ΠΈ Π²ΠΈΠ²Ρ‡Π΅Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ інвСрсійної мікроскопії, a Π΅ΠΏΡ–Ρ‚Π΅Π»Ρ–Π°Π»ΡŒΠ½ΠΈΠΉ ΡˆΠ°Ρ€ використовувався для гистохимичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΎΡ†Ρ–Π½ΠΊΠΈ Π½ΡƒΠΊΠ»Π΅Ρ–Π½ΠΎΠ²ΠΈx кислот фарбуванням Π”ΠΠš-РНК ΠΏo ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ейнарсона. Активні Ρ„ΠΎΡ€ΠΌΠΈ кисню (ROS) Π±ΡƒΠ»ΠΈ ΠΎΡ†Ρ–Π½Π΅Π½Ρ– Π² Π΅ΠΏΡ–Ρ‚Π΅Π»Ρ–Π°Π»ΡŒΠ½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΠ° Π·Π° допомогою Ρ„Π»yорСсцСнтной мікроскопії для Π²ΠΈΠΌΡ–Ρ€Ρƒ рівня ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΎΠ³ΠΎ окислСння Ρ‰ΠΎΠ΄ΠΎ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ. Висока Π΄ΠΎΠ·Π° глюкози Π· Π΄ΠΈΠΌΠΎΠΌ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” ΠΎΠΏΡ‚ΠΈΡ‡Π½Ρ– Ρ‚Π° ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Π·ΠΌΡ–Π½ΠΈ Π² Π΅ΠΏΡ–Ρ‚Π΅Π»Ρ–Π°Π»ΡŒΠ½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… (гіпСртрофія, гіпСрплазія) Ρ– Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ” Ρ„Π»yΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ†Ρ–ΡŽ. Антиоксиданти Π·ΠΌΠ΅Π½ΡˆΡƒΡŽΡ‚ΡŒ Ρ†Π΅ΠΉ Π²ΠΏΠ»ΠΈΠ², Π·Π½ΠΈΠΆΡƒΡŽΡ‚ΡŒ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ ΠΏΠΎΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½, Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°ΡŽΡ‚ΡŒ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Ρƒ Π΄Ρ–ΡΠ»ΡŒΠ½Ρ–ΡΡ‚ΡŒ ROS. NAC захистив Π»Ρ–Π½Π·ΠΈ Π²Ρ–Π΄ пошкодТСння Π΄Π΅Ρ‰ΠΎ ΠΊΡ€Π°Ρ‰Π΅, Π½Ρ–ΠΆ DFO. Ми припускаємо, Ρ‰ΠΎ Π΄Π°Π½Ρ– Π°Π½Ρ‚ΠΈΠΎΠΊΠΈΡΠ»ΡŽΠ²Π°Ρ‡Ρ– ΠΌΠΎΠΆΡƒΡ‚ΡŒ слуТити Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ засобом захисту ΠΊΡ€ΠΈΡˆΡ‚Π°Π»ΠΈΠΊΠ° ΠΎΠΊΠ° ΠΏΡ€ΠΎΡ‚ΠΈ пошкодТСння Ρƒ курящих Π΄Ρ–Π°Π±Π΅Ρ‚ΠΈΠΊΡ–Π². Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, застосування антиокисних Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Π² ΠΏΡ€ΠΎΡ„Ρ–Π»Π°ΠΊΡ‚ΠΈΡ†Ρ– ΠΊΠ°Ρ‚Π°Ρ€Π°ΠΊΡ‚ΠΈ y ΠΊΡƒΡ€Ρ†Ρ–Π² Ρ‚Π° лікування Π΄ΡƒΠΆΠ΅ ΠΏΡ€ΠΈΠ²Π°Π±Π»ΠΈΠ²Π° ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ, яка ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΠΎΡŽ Π±Ρ–Π»ΡŒΡˆ Π³Π»ΠΈΠ±ΠΎΠΊΠΎ Π² ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌΡƒ

    Effects of smoking on the organ cultured bovine lenses

    No full text

    Antiradical effects in l-propionyl carnitine protection of the heart against ischemia-reperfusion injury: The possible role of iron chelation

    No full text
    l-Propionyl carnitine has been shown to improve the heart's mechanical recovery and other metabolic parameters after ischemia-reperfusion. However, the mechanism of protection is unknown. The two dominating hypotheses are: (i) l-propionyl carnitine can serve as an energy source for heart muscle cells by being enzymatically converted to propionyl-CoA and subsequently utilized in the Krebs cycle (a metabolic hypothesis), and (ii) it can act as an antiradical agent, protecting myocardial cells from oxidative damage (a free radical hypothesis). To test the two possible pathways, we compared the protection afforded to the ischemia-reperfused hearts by l-propionyl carnitine and its optical isomer, d-propionyl carnitine. The latter cannot be enzymatically utilized as an energy source. The Langendorff perfusion technique was used and the hearts were subjected to 40 min of ischemia and 20 min of reperfusion. In analysis of ischemiareperfused hearts, a strong correlation was found between the recovery of mechanical function and the presence of protein oxidation products (protein carbonyls). Both propionyl carnitines efficiently prevented protein oxidation but l-propionyl carnitine-perfused hearts had two times greater left ventricular developed pressure. The results indicate that both metabolic and antiradical pathway are involved in the protective mechanism of l-propionyl carnitine. To obtain a better insight of the antiradical mechanism of l-propionyl carnitine, we compared the ability of l- and d-propionyl carnitines, l-carnitine, and deferoxamine to interact with: (i) peroxyl radicals, (ii) oxygen radicals, and (iii) iron. We found that none of the carnitine derivatives were able to scavenge peroxyl radicals or superoxide radicals. l- and d-propionyl carnitine and deferoxamine (not l-carnitine) suppressed hydroxyl radical production in the Fenton system, probably by chelating the iron required for the generation of hydroxyl radicals. We suggest that l-propionyl carnitine protects the heart by a dual mechanism: it is an efficient fuel source and an antiradical agent

    Modulation of cutaneous wound healing by ozone: differences between young and aged mice.

    No full text
    Cutaneous tissues are frequently exposed to prooxidative environments, including UV radiation and air pollutants. Among the latter, ozone (O(3)) is of particular concern because of its high and dominating presence in photochemical smog. It is well known that O(3) depletes small molecular weight antioxidants, oxidizes proteins, induces lipid peroxidation and activates cellular responses in various tissues. Using an in vivo model (SKH-1 hairless mice), the interaction between O(3) exposure (0.5ppmx6h/day) and age was examined in relation to cutaneous wound healing. Compared to younger (8 weeks) mice, older (18 months) mice exposed to O(3) (day 0 to day 9 after wounding) exhibited delayed wound closure, increased lipid peroxidation (measured as 4-HNE protein adducts) and protein oxidation (measured as carbonyls concentration) and decreased levels of P-IkappaBalpha and TGFbeta protein. These findings support the hypothesis that oxidant pollutant exposure and age interact so as to disrupt normal wound healing processes
    corecore