404 research outputs found

    Adaptive mastery testing using the Rasch model and Bayesian sequential decision theory

    Get PDF
    A version of sequential mastery testing is studied in which response behavior is modeled by an item response theory (IRT) model. First, a general theoretical framework is sketched that is based on a combination of Bayesian sequential decision theory and item response theory. A discussion follows on how IRT based sequential mastery testing can be generalized to adaptive item and testlet selection rules; i.e., to a situation in which the choice of the next item or testlet to be administered is optimized using the information from previous responses. The performance of IRT based sequential and adaptive sequential mastery testing is studied in a number of simulations using the Rasch model. The possibilities and difficulties of application of the approach in the framework of the two-parameter logistic and three-parameter logistic models is also discussed

    Deletion of the three distal S1 motifs of Saccharomyces cerevisiae Rrp5p abolishes pre-rRNA processing at site A(2) without reducing the production of functional 40S subunits

    Get PDF
    Yeast Rrp5p, one of the few trans-acting proteins required for the biogenesis of both ribosomal subunits, has a remarkable two-domain structure. Its C-terminal region consists of seven tetratricopeptide motifs, several of which are crucial for cleavages at sites

    Probing the effects of electrode composition and morphology on the effectiveness of silicon oxide overlayers to enhance selective oxygen evolution in the presence of chloride ions

    Get PDF
    Seawater electrolysis offers significant logistical advantages over freshwater electrolysis but suffers from a fundamental selectivity problem at the anode. To prevent the evolution of toxic chlorine alongside the evolution of oxygen, a promising approach is the use of electrochemically inert overlayers. Such thin films can exert a perm-selective effect, allowing the transport of water and oxygen between the bulk electrolyte and the electrocatalytic buried interface while suppressing the transport of chloride ions. In this work, we investigate thin (5-20 nm) overlayer films composed of amorphous silicon oxide (SiOx) and their application to suppressing the chlorine evolution reaction (CER) in favor of the oxygen evolution reaction (OER) during acidic saltwater electrolysis on three different types of electrodes. While SiOx overlayers are seen to be an effective barrier against the CER on well-defined, smooth Pt thin films, decreasing the CER activity roughly 20-fold, this ability has not been previously explored on Ir-based catalysts with a higher surface area relevant to industrial applications. On amorphous iridium oxide electrodes, the selectivity toward the CER versus the OER was marginally reduced from similar to 98 to similar to 94%, which was attributed to the higher abundance of defects in overlayers deposited on the rougher electrode. On the other hand, Ir-based anodes consisting of thick mixed metal oxide films supported on Ti showed a significant decrease in CER selectivity, from similar to 100 to similar to 50%, although this came at the cost of reduced activity toward the OER. These results show that the morphology and composition of the underlying electrode play important roles in the effectiveness of the selective overlayers and provide guidance for further development of high-surface-area OER-selective anodes.Catalysis and Surface Chemistr

    Differences in insect resistance between tomato species endemic to the Galapagos Islands

    Get PDF
    Background The Galapagos Islands constitute a highly diverse ecosystem and a unique source of variation in the form of endemic species. There are two endemic tomato species, Solanum galapagense and S. cheesmaniae and two introduced tomato species, S. pimpinellifolium and S. lycopersicum. Morphologically the two endemic tomato species of the Galapagos Islands are clearly distinct, but molecular marker analysis shows no clear separation. Tomatoes on the Galapagos are affected by both native and exotic herbivores. Bemisia tabaci is one of the most important introduced insects species that feeds on a wide range of plants. In this article, we address the question whether the differentiation between S. galapagense and S. cheesmaniae may be related to differences in susceptibility towards phloem-feeders and used B. tabaci as a model to evaluate this. Results We have characterized 12 accessions of S. galapagense, 22 of S. cheesmaniae, and one of S. lycopersicum as reference for whitefly resistance using no-choice experiments. Whitefly resistance was found in S. galapagense only and was associated with the presence of relatively high levels of acyl sugars and the presence of glandular trichomes of type I and IV. Genetic fingerprinting using 3316 SNP markers did not show a clear differentiation between the two endemic species. Acyl sugar accumulation as well as the climatic and geographical conditions at the collection sites of the accessions did not follow the morphological species boundaries

    Predicting success of vagus nerve stimulation (VNS) from interictal EEG

    Get PDF
    AbstractPurposeVagus nerve stimulation (VNS) has shown to be an effective treatment for drug resistant epilepsy in numerous patients, however, not in all. It is still not possible to predict which patients will profit from VNS. In this pilot study, we explore predictive interictal EEG features for seizure reduction after VNS.Methods19 Patients with medically refractory epilepsy and an implanted VNS system were included. Interictal EEG registrations, recorded before implantation, were retrospectively analysed. A quantative symmetry measure, the pair wise derived brain symmetry index (pdBSI), was tested to predict VNS outcome. Reduction in seizure frequency was used to define the responders.Results10 Patients did respond to VNS, of whom 7 patients had a seizure reduction of at least 50% in a follow-up period of 2 years. On average, we find higher pdBSI values for delta, theta, alpha and beta bands for non-responders than for responders. The average pdBSI of the theta and alpha bands could significantly discriminate between responders and non-responders.ConclusionIn this study, quantifying EEG symmetry using the pdBSI shows promising results in predicting the reduction of seizure frequency after VNS treatment

    High prevalence rate of digestive tract bacteria in duodenoscopes: A nationwide study

    Get PDF
    Objective Increasing numbers of outbreaks caused by contaminated duodenoscopes used for Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures have been reported, some with fatal outcomes. We conducted a nationwide cross-sectional study to determine the prevalence of bacterial contamination of reprocessed duodenoscopes in The Netherlands. Design All 73 Dutch ERCP centres were invited to sample ≥2 duodenoscopes using centrally distributed kits according to uniform sampling methods, explained by video instructions. Depending on duodenoscope type, four to six sites were sampled and centrally cultured. Contamination was defined as (1) any microorganism with ≥20 colony forming units (CFU)/20 mL (AM20) and (2) presence of microorganisms with gastrointestinal or oral origin, independent of CFU count (MGO). Results Sixty-seven out of 73 centres (92%) sampled 745 sites of 155 duodenoscopes. Ten different duodenoscope types from three distinct manufacturers were sampled including 69 (46%) Olympus TJF-Q180V, 43 (29%) Olympus TJF-160VR, 11 (7%) Pentax ED34-i10T, 8 (5%) Pentax ED-3490TK and 5 (3%) Fujifilm ED-530XT8. Thirty-three (22%) duodenoscopes from 26 (39%) centres were contaminated (AM20). On 23 (15%) duodenoscopes MGO were detected, including Enterobacter cloacae, Escherichia coli, Klebsiella pneumonia and yeasts. For both definitions, contamination was not duodenoscope type dependent (p values: 0.20 and higher). Conclusion In 39% of all Dutch ERCP centres, at least one AM20-contaminated patient-ready duodenoscope was identified. Fifteen per cent of the duodenoscopes harboured MGO, indicating residual organic material of previous patients, that is, failing of disinfection. These results suggest that the present reprocessing and process control procedures are not adequate and safe

    LiMeS-Lab:An Integrated Laboratory for the Development of Liquid–Metal Shield Technologies for Fusion Reactors

    Get PDF
    The liquid metal shield laboratory (LiMeS-Lab) will provide the infrastructure to develop, test, and compare liquid metal divertor designs for future fusion reactors. The main research topics of LiMeS-lab will be liquid metal interactions with the substrate material of the divertor, the continuous circulation and capillary refilling of the liquid metal during intense plasma heat loading and the retention of plasma particles in the liquid metal. To facilitate the research, four new devices are in development at the Dutch Institute for Fundamental Energy Research and the Eindhoven University of Technology: LiMeS-AM: a custom metal 3D printer based on powder bed fusion; LiMeS-Wetting, a plasma device to study the wetting of liquid metals on various substrates with different surface treatments; LiMeS-PSI, a linear plasma generator specifically adapted to operate continuous liquid metal loops. Special diagnostic protection will also be implemented to perform measurements in long duration shots without being affected by the liquid metal vapor; LiMeS-TDS, a thermal desorption spectroscopy system to characterize deuterium retention in a metal vapor environment. Each of these devices has specific challenges due to the presence and deposition of metal vapors that need to be addressed in order to function. In this paper, an overview of LiMeS-Lab will be given and the conceptual designs of the last three devices will be presented.</p
    • …
    corecore