9 research outputs found

    Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate

    Get PDF
    Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry

    North American symposium on laser induced breakdown spectroscopy (NASLIBS): Introduction to feature issue

    No full text
    This feature issue highlights the topics of the 2011 North American Symposium on Laser Induced Breakdown Spectroscopy (NASLIBS). These include LIBS application to Security and Forensic, Biomedical and Environmental, Liquid Analysis and Fundamentals of LIBS, Instrumentation/Commercialization, Fusion with LIBS, and New Frontiers. \ua9 2012 Optical Society of America.Peer reviewed: YesNRC publication: Ye

    Quantitative laser-induced fluorescence: some recent developments in combustion diagnostics

    Get PDF
    Kohse-Höinghaus K. Quantitative laser-induced fluorescence: some recent developments in combustion diagnostics. Applied Physics, B. 1990;50(6):455-461.This report summarizes several recent applications of quantitative laser-induced fluorescence techniques for the determination of species concentrations and temperature in combustion processes. Several lines of further development are discusse
    corecore