10 research outputs found

    RMS capacity utilisation: product family and supply chain

    Get PDF
    yesThe paper contributes to development of RMS through linkage with external stakeholders such as customers and suppliers of parts/raw materials to handle demand fluctuations that necessitate information sharing across the supply chain tiers. RMS is developed as an integrated supply chain hub for adjusting production capacity using a hybrid methodology of decision trees and Markov analysis. The proposed Markov Chain model contributes to evaluate and monitor system reconfigurations required due to changes of product families with consideration of the product life cycles. The simulation findings indicate that system productivity and financial performance in terms of the profit contribution of product-process allocation will vary over configuration stages. The capacity of an RMS with limited product families and/or limited model variants becomes gradually inoperative whilst approaching upcoming configuration stages due to the end of product life cycles. As a result, reconfiguration preparation is suggested quite before ending life cycle of an existing product in process, for switching from a product family to a new/another product family in the production range, subject to its present demand. The proposed model is illustrated through a simplified case study with given product families and transition probabilities

    A design strategy for reconfigurable manufacturing systems (RMSs) using the analytical hierarchical process (AHP): A case study.

    No full text
    NoThis paper presents Reconfigurable Manufacturing System (RMS) characteristics through comparison with conventional manufacturing systems in order to address a design strategy towards a RMS. The strategy is considered as apart of a RMS design loop to achieve a reconfigurable strategy over its implementation period. As another part of the design loop, a reconfiguration link between market and manufacturing is presented in order to group products into families (reconfiguring products) and then assign them to the required manufacturing processes over configuration stages. In particular, the Analytical Hierarchical Process (AHP) is employed for structuring the decision making process for the selection of a manufacturing system among feasible alternatives based on the RMS study. Manufacturing responsiveness is considered as the ability of using existing resources to reflect new environmental and technological changes quickly. The AHP model highlights manufacturing responsiveness as a new economic objective along with classical objectives such as low cost and high quality. The forward-backward process is then proposed to direct and control the design strategy under uncertain conditions during its implementation period. The proposed hierarchy is generic in structure and could be applicable to many firms by means of restructuring the criteria. This work is based on a case study in a manufacturing environment. Expert Choice software (Expert Choice 1999) is applied to examine the structure of the proposed model and achieve synthesise/ graphical results considering inconsistency ratios. The results are examined by monitoring sensitivity analysis while changing the criteria priorities. Finally, to allocate available resources to the alternative solutions, a (0-1) knapsack formulation algorithm is represented

    Cardiac and Pericardial Tumors

    No full text

    A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee

    No full text
    Many clinical trials have evaluated the benefit of long-term use of antiplatelet drugs in reducing the risk of clinical thrombotic events. Aspirin and ticlopidine have been shown to be effective, but both have potentially serious adverse effects. Clopidogrel, a new thienopyridine derivative similar to ticlopidine, is an inhibitor of platelet aggregation induced by adenosine diphosphate. METHODS: CAPRIE was a randomised, blinded, international trial designed to assess the relative efficacy of clopidogrel (75 mg once daily) and aspirin (325 mg once daily) in reducing the risk of a composite outcome cluster of ischaemic stroke, myocardial infarction, or vascular death; their relative safety was also assessed. The population studied comprised subgroups of patients with atherosclerotic vascular disease manifested as either recent ischaemic stroke, recent myocardial infarction, or symptomatic peripheral arterial disease. Patients were followed for 1 to 3 years. FINDINGS: 19,185 patients, with more than 6300 in each of the clinical subgroups, were recruited over 3 years, with a mean follow-up of 1.91 years. There were 1960 first events included in the outcome cluster on which an intention-to-treat analysis showed that patients treated with clopidogrel had an annual 5.32% risk of ischaemic stroke, myocardial infarction, or vascular death compared with 5.83% with aspirin. These rates reflect a statistically significant (p = 0.043) relative-risk reduction of 8.7% in favour of clopidogrel (95% Cl 0.3-16.5). Corresponding on-treatment analysis yielded a relative-risk reduction of 9.4%. There were no major differences in terms of safety. Reported adverse experiences in the clopidogrel and aspirin groups judged to be severe included rash (0.26% vs 0.10%), diarrhoea (0.23% vs 0.11%), upper gastrointestinal discomfort (0.97% vs 1.22%), intracranial haemorrhage (0.33% vs 0.47%), and gastrointestinal haemorrhage (0.52% vs 0.72%), respectively. There were ten (0.10%) patients in the clopidogrel group with significant reductions in neutrophils (< 1.2 x 10(9)/L) and 16 (0.17%) in the aspirin group. INTERPRETATION: Long-term administration of clopidogrel to patients with atherosclerotic vascular disease is more effective than aspirin in reducing the combined risk of ischaemic stroke, myocardial infarction, or vascular death. The overall safety profile of clopidogrel is at least as good as that of medium-dose aspirin
    corecore