81 research outputs found

    Radiation effects in a muon collider ring and dipole magnet protection

    Full text link
    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 1034 cm-2s-1. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Muon Collider interaction region and machine-detector interface design

    Full text link
    One of the key systems of a Muon Collider (MC) - seen as the most exciting option for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interlaced and iterative. As a result of recent comprehensive studies, consistent solutions for the 1.5-TeV c.o.m. MC IR have been found and are described here. To provide the required momentum acceptance, dynamic aperture and chromaticity, an innovative approach was used for the IR optics. Conceptual designs of large-aperture high-field dipole and high-gradient quadrupole magnets based on Nb3Sn superconductor were developed and analyzed in terms of the operating margin, field quality, mechanics, coil cooling and quench protection. Shadow masks in the interconnect regions and liners inside the magnets are used to mitigate the unprecedented dynamic heat deposition due to muon decays (~0.5 kW/m). It is shown that an appropriately designed machine-detector interface (MDI) with sophisticated shielding in the detector has a potential to substantially suppress the background rates in the MC detector.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Study of HTS Wires at High Magnetic Fields

    Full text link

    Quench Protection Study of a Single-Aperture 11 T Nb3Sn Demonstrator Dipole for LHC Upgrades

    Get PDF
    The planned upgrade of the Large Hadron Collider (LHC) collimation system will include installation of additional collimators in the dispersion suppressor areas. The longitudinal space for the collimators could be provided by replacing 15-m-long 8.33 T NbTi LHC main dipoles with shorter 11 T Nb 3Sn dipoles compatible with the LHC lattice and main systems. FNAL and CERN have started a joint program with the goal of building a 5.5-m-long twin-aperture Nb3Sn dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m-long single-aperture demonstrator dipole with a nominal field of 11 T at the LHC nominal current of 11.85 kA. This paper summarizes the results of quench protection studies of 11 T dipoles performed using the single-aperture Nb 3Sn demonstrator
    corecore