35 research outputs found

    Relative drifts and biases between six ozone limb satellite measurements from the last decade

    Get PDF
    As part of European Space Agency’s (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA’s Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA’s third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3% decade1^{-1} (1σ). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere

    Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model

    Get PDF
    We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely phi_pi(x)=1 for the pion distribution amplitude, and = -M / f_pi^2 for the second moment of the pion light-cone wave function, where M is the constituent quark mass and f_pi is the pion decay constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved. This allows us to determine the momentum scale corresponding to our model calculation, which is close to the value Q_0 = 313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The value of is, after the QCD evolution, around (400 MeV)^2. In addition, the model predicts a linear integral relation between the pion distribution amplitude and the parton distribution function of the pion, which holds at the leading-order QCD evolution.Comment: mistake in Eq.(38) correcte

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Solution of the Kwiecinski evolution equations for unintegrated parton distributions using the Mellin transform

    Full text link
    The Kwiecinski equations for the QCD evolution of the unintegrated parton distributions in the transverse-coordinate space (b) are analyzed with the help of the Mellin-transform method. The equations are solved numerically in the general case, as well as in a small-b expansion which converges fast for b Lambda_QCD sufficiently small. We also discuss the asymptotic limit of large bQ and show that the distributions generated by the evolution decrease with b according to a power law. Numerical results are presented for the pion distributions with a simple valence-like initial condition at the low scale, following from chiral large-N_c quark models. We use two models: the Spectral Quark Model and the Nambu--Jona-Lasinio model. Formal aspects of the equations, such as the analytic form of the b-dependent anomalous dimensions, their analytic structure, as well as the limits of unintegrated parton densities at x -> 0, x -> 1, and at large b, are discussed in detail. The effect of spreading of the transverse momentum with the increasing scale is confirmed, with growing asymptotically as Q^2 alpha(Q^2). Approximate formulas for for each parton species is given, which may be used in practical applications.Comment: 18 pages, 6 figures, RevTe

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    The theta^+ baryon in soliton models: large Nc QCD and the validity of rigid-rotor quantization

    Full text link
    A light collective theta+ baryon state (with strangeness +1) was predicted via rigid-rotor collective quantization of SU(3) chiral soliton models. This paper explores the validity of this treatment. A number of rather general analyses suggest that predictions of exotic baryon properties based on this approximation do not follow from large Nc QCD. These include an analysis of the baryon's width, a comparison of the predictions with general large Nc consistency conditions of the Gervais-Sakita-Dashen-Manohar type; an application of the technique to QCD in the limit where the quarks are heavy; a comparison of this method with the vibration approach of Callan and Klebanov; and the 1/Nc scaling of the excitation energy. It is suggested that the origin of the problem lies in an implicit assumption in the that the collective motion is orthogonal to vibrational motion. While true for non-exotic motion, the Wess-Zumino term induces mixing at leading order between collective and vibrational motion with exotic quantum numbers. This suggests that successful phenomenological predictions of theta+ properties based on rigid-rotor quantization were accidental.Comment: 19 pages; A shorter more readable versio

    The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies

    Get PDF
    Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore