24 research outputs found

    Current noise in long diffusive SNS junctions in the incoherent MAR regime

    Full text link
    Spectral density of current fluctuations at zero frequency is calculated for a long diffusive SNS junction with low-resistive interfaces. At low temperature, T << Delta, the subgap shot noise approaches linear voltage dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the normal conductor and voltage independent excess noise. This result can also be interpreted as the 1/3-suppressed Poisson noise for the effective charge q = e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At higher temperatures, anomalies of the current noise develop at the gap subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.

    Thermodynamic Limit for the Invariant Measures in Supercritical Zero Range Processes

    Full text link
    We prove a strong form of the equivalence of ensembles for the invariant measures of zero range processes conditioned to a supercritical density of particles. It is known that in this case there is a single site that accomodates a macroscopically large number of the particles in the system. We show that in the thermodynamic limit the rest of the sites have joint distribution equal to the grand canonical measure at the critical density. This improves the result of Gro\ss kinsky, Sch\"{u}tz and Spohn, where convergence is obtained for the finite dimensional marginals. We obtain as corollaries limit theorems for the order statistics of the components and for the fluctuations of the bulk

    Electron-electron scattering effects on the Full Counting Statistics of Mesoscopic Conductors

    Full text link
    In the hot electron regime, electron-electron scattering strongly modifies not only the shot noise but also the full counting statistics. We employ a method based on a stochastic path integral to calculate the counting statistics of two systems in which noise in the hot electron regime has been experimentally measured. We give an analytical expression for the counting statistics of a chaotic cavity and find that heating due to electron-electron scattering renders the distribution of transmitted charge symmetric in the shot noise limit. We also discuss the frequency dispersion of the third order correlation function and present numerical calculations for the statistics of diffusive wires in the hot electron regime

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Dispersion of Ordered Stripe Phases in the Cuprates

    Full text link
    A phase separation model is presented for the stripe phase of the cuprates, which allows the doping dependence of the photoemission spectra to be calculated. The idealized limit of a well-ordered array of magnetic and charged stripes is analyzed, including effects of long-range Coulomb repulsion. Remarkably, down to the limit of two-cell wide stripes, the dispersion can be interpreted as essentially a superposition of the two end-phase dispersions, with superposed minigaps associated with the lattice periodicity. The largest minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk) Van Hove singularity. The calculated spectra are dominated by two features -- this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a strong correlation between these two features and the experimental photoemission results of a two-peak dispersion in La2x_{2-x}Srx_xCuO4_4, and the peak-dip-hump spectra in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. The differences are suggestive of the role of increasing stripe fluctuations. The 1/8 anomaly is associated with a quantum critical point, here expressed as a percolation-like crossover. A model is proposed for the limiting minority magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure

    On the self-consistent spin-wave theory of layered Heisenberg magnets

    Full text link
    The versions of the self-consistent spin-wave theories (SSWT) of two-dimensional (2D) Heisenberg ferro- and antiferromagnets with a weak interlayer coupling and/or magnetic anisotropy, that are based on the non-linear Dyson-Maleev, Schwinger, and combined boson-pseudofermion representations, are analyzed. Analytical results for the temperature dependences of (sublattice) magnetization and short-range order parameter, and the critical points are obtained. The influence of external magnetic field is considered. Fluctuation corrections to SSWT are calculated within a random-phase approximation which takes into account correctly leading and next-leading logarithmic singularities. These corrections are demonstrated to improve radically the agreement with experimental data on layered perovskites and other systems. Thus an account of these fluctuations provides a quantitative theory of layered magnets.Comment: 46 pages, RevTeX, 7 figure
    corecore