46 research outputs found

    ПЕДАГОГІЧНЕ УПРАВЛІННЯ СТВОРЕННЯМ УМОВ, ШЛЯХІВ І ПІДХОДІВ ДО ОСОБИСТОСТІ УЧНЯ ІІРИ ВИВЧЕННІ ФІЗИКИ

    Get PDF
    This article deals with the pedagogical government in making conditions, approaches and ways to an individual of a pupil on materials of studying physics

    Quadratic solitons as nonlocal solitons

    Get PDF
    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.Comment: 4 pages, 3 figure

    Two-color nonlinear localized photonic modes

    Full text link
    We analyze second-harmonic generation (SHG) at a thin effectively quadratic nonlinear interface between two linear optical media. We predict multistability of SHG for both plane and localized waves, and also describe two-color localized photonic modes composed of a fundamental wave and its second harmonic coupled together by parametric interaction at the interface.Comment: 4 pages, 5 figures (updated references

    A concentration phenomenon for semilinear elliptic equations

    Full text link
    For a domain \Omega\subset\dR^N we consider the equation -\Delta u + V(x)u = Q_n(x)\abs{u}^{p-2}u with zero Dirichlet boundary conditions and p(2,2)p\in(2,2^*). Here V0V\ge 0 and QnQ_n are bounded functions that are positive in a region contained in Ω\Omega and negative outside, and such that the sets {Qn>0}\{Q_n>0\} shrink to a point x0Ωx_0\in\Omega as nn\to\infty. We show that if unu_n is a nontrivial solution corresponding to QnQ_n, then the sequence (un)(u_n) concentrates at x0x_0 with respect to the H1H^1 and certain LqL^q-norms. We also show that if the sets {Qn>0}\{Q_n>0\} shrink to two points and unu_n are ground state solutions, then they concentrate at one of these points

    Soliton molecules in trapped vector Nonlinear Schrodinger systems

    Full text link
    We study a new class of vector solitons in trapped Nonlinear Schrodinger systems modelling the dynamics of coupled light beams in GRIN Kerr media and atomic mixtures in Bose-Einstein condensates. These solitons exist for different spatial dimensions, their existence is studied by means of a systematic mathematical technique and the analysis is made for inhomogeneous media

    Scattering of dipole-mode vector solitons: Theory and experiment

    Full text link
    We study, both theoretically and experimentally, the scattering properties of optical dipole-mode vector solitons - radially asymmetric composite self-trapped optical beams. First, we analyze the soliton collisions in an isotropic two-component model with a saturable nonlinearity and demonstrate that in many cases the scattering dynamics of the dipole-mode solitons allows us to classify them as ``molecules of light'' - extremely robust spatially localized objects which survive a wide range of interactions and display many properties of composite states with a rotational degree of freedom. Next, we study the composite solitons in an anisotropic nonlinear model that describes photorefractive nonlinearities, and also present a number of experimental verifications of our analysis.Comment: 8 pages + 4 pages of figure

    Stable vortex and dipole vector solitons in a saturable nonlinear medium

    Full text link
    We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole vector solitons in a saturable nonlinear medium in (2+1) dimensions. We construct perturbation series expansions for the vortex and dipole vector solitons near the bifurcation point where the vortex and dipole components are small. We show that both solutions uniquely bifurcate from the same bifurcation point. We also prove that both vortex and dipole vector solitons are linearly stable in the neighborhood of the bifurcation point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition, we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.

    Standard and Embedded Solitons in Nematic Optical Fibers

    Full text link
    A model for a non-Kerr cylindrical nematic fiber is presented. We use the multiple scales method to show the possibility of constructing different kinds of wavepackets of transverse magnetic (TM) modes propagating through the fiber. This procedure allows us to generate different hierarchies of nonlinear partial differential equations (PDEs) which describe the propagation of optical pulses along the fiber. We go beyond the usual weakly nonlinear limit of a Kerr medium and derive an extended Nonlinear Schrodinger equation (eNLS) with a third order derivative nonlinearity, governing the dynamics for the amplitude of the wavepacket. In this derivation the dispersion, self-focussing and diffraction in the nematic are taken into account. Although the resulting nonlinear PDEPDE may be reduced to the modified Korteweg de Vries equation (mKdV), it also has additional complex solutions which include two-parameter families of bright and dark complex solitons. We show analytically that under certain conditions, the bright solitons are actually double embedded solitons. We explain why these solitons do not radiate at all, even though their wavenumbers are contained in the linear spectrum of the system. Finally, we close the paper by making comments on the advantages as well as the limitations of our approach, and on further generalizations of the model and method presented.Comment: "Physical Review E, in press

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Engineered nonlinear lattices

    Get PDF
    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version
    corecore