5 research outputs found

    First Evidence of Axial Shape Asymmetry and Configuration Coexistence in 74^{74}Zn: Suggestion for a Northern Extension of the N=40N=40 Island of Inversion

    No full text
    International audienceThe excited states of N=44N=4474^{74}Zn were investigated via γ\gamma-ray spectroscopy following 74^{74}Cu β\beta decay. By exploiting γ\gamma-γ\gamma angular correlation analysis, the 22+2_2^+, 31+3_1^+, 02+0_2^+ and 23+2_3^+ states in 74^{74}Zn were firmly established. The γ\gamma-ray branching and E2/M1E2/M1 mixing ratios for transitions de-exciting the 22+2_2^+, 31+3_1^+ and 23+2_3^+ states were measured, allowing for the extraction of relative B(E2)B(E2) values. In particular, the 23+→02+2_3^+ \to 0_2^+ and 23+→41+2_3^+ \to 4_1^+ transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize 74^{74}Zn in its ground state. Furthermore, an excited K=0K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40N=40``island of inversion'' appears to manifest above Z=26Z=26, previously thought as its northern limit in the chart of the nuclides

    First Evidence of Axial Shape Asymmetry and Configuration Coexistence in 74^{74}Zn: Suggestion for a Northern Extension of the N=40N=40 Island of Inversion

    No full text
    International audienceThe excited states of N=44N=4474^{74}Zn were investigated via γ\gamma-ray spectroscopy following 74^{74}Cu β\beta decay. By exploiting γ\gamma-γ\gamma angular correlation analysis, the 22+2_2^+, 31+3_1^+, 02+0_2^+ and 23+2_3^+ states in 74^{74}Zn were firmly established. The γ\gamma-ray branching and E2/M1E2/M1 mixing ratios for transitions de-exciting the 22+2_2^+, 31+3_1^+ and 23+2_3^+ states were measured, allowing for the extraction of relative B(E2)B(E2) values. In particular, the 23+→02+2_3^+ \to 0_2^+ and 23+→41+2_3^+ \to 4_1^+ transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize 74^{74}Zn in its ground state. Furthermore, an excited K=0K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40N=40``island of inversion'' appears to manifest above Z=26Z=26, previously thought as its northern limit in the chart of the nuclides

    Literaturverzeichnis

    No full text
    corecore