22 research outputs found

    Spin Nomenclature for Semiconductors and Magnetic Metals

    Full text link
    The different conventions used in the semiconductor and magnetic metals communities can cause confusion in the context of spin polarization and transport in simple heterostructures. In semiconductors, terminology is based on the orientation of the electron spin, while in magnetic metals it is based on the orientation of the moment. In the rapidly expanding field of spintronics, where both semiconductors and metallic metals are important, some commonly used terms ("spin-up," "majority spin") can have different meanings. Here, we clarify nomenclature relevant to spin transport and optical polarization by relating the common physical observables and "definitions" of spin polarization to the fundamental concept of conservation of angular momentum within a well-defined reference frame.Comment: 3 pages, 2 figures, 16 reference

    Electron Spin Injection at a Schottky Contact

    Full text link
    We investigate theoretically electrical spin injection at a Schottky contact between a spin-polarized electrode and a non-magnetic semiconductor. Current and electron density spin-polarizations are discussed as functions of barrier energy and semiconductor doping density. The effect of a spin-dependent interface resistance that results from a tunneling region at the contact/semiconductor interface is described. The model can serve as a guide for designing spin-injection experiments with regard to the interface properties and device structure.Comment: 4 pages, 4 figure

    Optoelectric spin injection in semiconductor heterostructures without ferromagnet

    Full text link
    We have shown that electron spin density can be generated by a dc current flowing across a pnpn junction with an embedded asymmetric quantum well. Spin polarization is created in the quantum well by radiative electron-hole recombination when the conduction electron momentum distribution is shifted with respect to the momentum distribution of holes in the spin split valence subbands. Spin current appears when the spin polarization is injected from the quantum well into the nn-doped region of the pnpn junction. The accompanied emission of circularly polarized light from the quantum well can serve as a spin polarization detector.Comment: 2 figure

    Spin-Polarized Electron Transport at Ferromagnet/Semiconductor Schottky Contacts

    Full text link
    We theoretically investigate electron spin injection and spin-polarization sensitive current detection at Schottky contacts between a ferromagnetic metal and an n-type or p-type semiconductor. We use spin-dependent continuity equations and transport equations at the drift-diffusion level of approximation. Spin-polarized electron current and density in the semiconductor are described for four scenarios corresponding to the injection or the collection of spin polarized electrons at Schottky contacts to n-type or p-type semiconductors. The transport properties of the interface are described by a spin-dependent interface resistance, resulting from an interfacial tunneling region. The spin-dependent interface resistance is crucial for achieving spin injection or spin polarization sensitivity in these configurations. We find that the depletion region resulting from Schottky barrier formation at a metal/semiconductor interface is detrimental to both spin injection and spin detection. However, the depletion region can be tailored using a doping density profile to minimize these deleterious effects. For example, a heavily doped region near the interface, such as a delta-doped layer, can be used to form a sharp potential profile through which electrons tunnel to reduce the effective Schottky energy barrier that determines the magnitude of the depletion region. The model results indicate that efficient spin-injection and spin-polarization detection can be achieved in properly designed structures and can serve as a guide for the structure design.Comment: RevTex

    Electric-field dependent spin diffusion and spin injection into semiconductors

    Full text link
    We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals. In this regime there are two distinct spin diffusion lengths. Furthermore, spin injection from a ferromagnetic metal into a semiconductor is enhanced by several orders of magnitude and spins can be transported over distances much greater than the low-field spin diffusion length.Comment: 5 pages, 3 eps figure

    Spin-polarized Tunneling in Hybrid Metal-Semiconductor Magnetic Tunnel Junctions

    Full text link
    We demonstrate efficient spin-polarized tunneling between a ferromagnetic metal and a ferromagnetic semiconductor with highly mismatched conductivities. This is indicated by a large tunneling magnetoresistance (up to 30%) at low temperatures in epitaxial magnetic tunnel junctions composed of a ferromagnetic metal (MnAs) and a ferromagnetic semiconductor (GaMnAs) separated by a nonmagnetic semiconductor (AlAs). Analysis of the current-voltage characteristics yields detailed information about the asymmetric tunnel barrier. The low temperature conductance-voltage characteristics show a zero bias anomaly and a V^1/2 dependence of the conductance, indicating a correlation gap in the density of states of GaMnAs. These experiments suggest that MnAs/AlAs heterostructures offer well characterized tunnel junctions for high efficiency spin injection into GaAs.Comment: 14 pages, submitted to Phys. Rev.

    First-principles study of nucleation, growth, and interface structure of Fe/GaAs

    Full text link
    We use density-functional theory to describe the initial stages of Fe film growth on GaAs(001), focusing on the interplay between chemistry and magnetism at the interface. Four features appear to be generic: (1) At submonolayer coverages, a strong chemical interaction between Fe and substrate atoms leads to substitutional adsorption and intermixing. (2) For films of several monolayers and more, atomically abrupt interfaces are energetically favored. (3) For Fe films over a range of thicknesses, both Ga- and As-adlayers dramatically reduce the formation energies of the films, suggesting a surfactant-like action. (4) During the first few monolayers of growth, Ga or As atoms are likely to be liberated from the interface and diffuse to the Fe film surface. Magnetism plays an important auxiliary role for these processes, even in the dilute limit of atomic adsorption. Most of the films exhibit ferromagnetic order even at half-monolayer coverage, while certain adlayer-capped films show a slight preference for antiferromagnetic order.Comment: 11 two-column pages, 12 figures, to appear in Phys. Rev.

    Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells

    Full text link
    By studying the time and spatial evolution of a pulse of the spin polarization in nn-type semiconductor quantum wells, we highlight the importance of the off-diagonal spin coherence in spin diffusion and transport. Spin oscillations and spin polarization reverse along the the direction of spin diffusion in the absence of the applied magnetic field are predicted from our investigation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Coherent spin valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions

    Full text link
    Coherent quantum transport in ferromagnetic/ semiconductor/ ferromagnetic junctions is studied theoretically within the Landauer framework of ballistic transport. We show that quantum coherence can have unexpected implications for spin injection and that some intuitive spintronic concepts which are founded in semi-classical physics no longer apply: A quantum spin-valve (QSV) effect occurs even in the absence of a net spin polarized current flowing through the device, unlike in the classical regime. The converse effect also arises, i.e. a zero spin-valve signal for a non-vanishing spin-current. We introduce new criteria useful for analyzing quantum and classical spin transport phenomena and the relationships between them. The effects on QSV behavior of spin-dependent electron transmission at the interfaces, interface Schottky barriers, Rashba spin-orbit coupling and temperature, are systematically investigated. While the signature of the QSV is found to be sensitive to temperature, interestingly, that of its converse is not. We argue that the QSV phenomenon can have important implications for the interpretation of spin-injection in quantum spintronic experiments with spin-valve geometries.Comment: 15 pages including 11 figures. To appear in PR

    Spin injection into a ballistic semiconductor microstructure

    Full text link
    A theory of spin injection across a ballistic ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann regime. Spin injection coefficient γ\gamma is suppressed by the Sharvin resistance of the semiconductor rN∗=(h/e2)(π2/SN)r_N^*=(h/e^2)(\pi^2/S_N), where SNS_N is the Fermi-surface cross-section. It competes with the diffusion resistances of the ferromagnets rFr_F, and γ∼rF/rN∗≪1\gamma\sim r_F/r_N^*\ll 1 in the absence of contact barriers. Efficient spin injection can be ensured by contact barriers. Explicit formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results of the ballistic and diffusive theories of spin injection is added. To this end, some notations are changed. Three references added, typos correcte
    corecore