2,565 research outputs found
Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data
We consider the one-dimensional focusing nonlinear Schr\"odinger equation
(NLS) with a delta potential and even initial data. The problem is equivalent
to the solution of the initial/boundary problem for NLS on a half-line with
Robin boundary conditions at the origin. We follow the method of Bikbaev and
Tarasov which utilizes a B\"acklund transformation to extend the solution on
the half-line to a solution of the NLS equation on the whole line. We study the
asymptotic stability of the stationary 1-soliton solution of the equation under
perturbation by applying the nonlinear steepest-descent method for
Riemann-Hilbert problems introduced by Deift and Zhou. Our work strengthens,
and extends, earlier work on the problem by Holmer and Zworski
Microscopic mechanisms of spin-dependent electric polarization in 3d oxides
We present a short critical overview of different microscopic models for
nonrelativistic and relativistic magnetoelectric coupling including the
so-called "spin current scenario", ab-initio calculations, and several recent
microscopic approaches to a spin-dependent electric polarization in 3d oxides.Comment: 8 pages, 3 figure
Angle-resolved photoemission in doped charge-transfer Mott insulators
A theory of angle-resolved photoemission (ARPES) in doped cuprates and other
charge-transfer Mott insulators is developed taking into account the realistic
(LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon
interaction, and a random field potential. In most of these materials the first
band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the
coherent part of the ARPES spectra with the oxygen hole spectral function
calculated in the non-crossing (ladder) approximation and with the exact
spectral function of a one-dimensional hole in a random potential. Some unusual
features of ARPES including the polarisation dependence and spectral shape in
YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or
small. The theory is compatible with the doping dependence of kinetic and
thermodynamic properties of cuprates as well as with the d-wave symmetry of the
superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.
Geophysical Exploration of Vesta
Dawn’s year-long stay at Vesta allows
comprehensive mapping of the shape, topography,
geology, mineralogy, elemental abundances, and
gravity field using it’s three instruments and highprecision
spacecraft navigation. In the current Low
Altitude Mapping Orbit (LAMO), tracking data is being
acquired to develop a gravity field expected to be
accurate to degree and order ~20 [1, 2]. Multi-angle
imaging in the Survey and High Altitude Mapping
Orbit (HAMO) has provided adequate stereo coverage
to develop a shape model accurate to ~10 m at 100 m
horizontal spatial resolution. Accurate mass determination
combined with the shape yields a more precise
value of bulk density, albeit with some uncertainty
resulting from the unmeasured seasonally-dark north
polar region. The shape and gravity of Vesta can be
used to infer the interior density structure and investigate
the nature of the crust, informing models for Vesta’s
formation and evolution
Masses of composite fermions carrying two and four flux quanta: Differences and similarities
This study provides a theoretical rationalization for the intriguing
experimental observation regarding the equality of the normalized masses of
composite fermions carrying two and four flux quanta, and also demonstrates
that the mass of the latter type of composite fermion has a substantial filling
factor dependence in the filling factor range , in agreement
with experiment, originating from the relatively strong inter-composite fermion
interactions here.Comment: 5 pages, 2 figure
Neutrino Oscillations and Collider Test of the R-parity Violating Minimal Supergravity Model
We study the R-parity violating minimal supergravity models accounting for
the observed neutrino masses and mixing, which can be tested in future collider
experiments. The bi-large mixing can be explained by allowing five dominant
tri-linear couplings and . The desired ratio
of the atmospheric and solar neutrino mass-squared differences can be obtained
in a very limited parameter space where the tree-level contribution is tuned to
be suppressed. In this allowed region, we quantify the correlation between the
three neutrino mixing angles and the tri-linear R-parity violating couplings.
Qualitatively, the relations , and are required by the large
atmospheric neutrino mixing angle and the small angle
, and the large solar neutrino mixing angle ,
respectively. Such a prediction on the couplings can be tested in the next
linear colliders by observing the branching ratios of the lightest
supersymmetric particle (LSP). For the stau or the neutralino LSP, the ratio
can be measured
by establishing or , respectively. The
information on the couplings can be drawn by measuring if the neutralino LSP is heavier than the top
quark.Comment: RevTex, 25 pages, 8 eps figure
Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion
Underactuation is ubiquitous in human locomotion and should be ubiquitous in
bipedal robotic locomotion as well. This chapter presents a coherent theory for
the design of feedback controllers that achieve stable walking gaits in
underactuated bipedal robots. Two fundamental tools are introduced, virtual
constraints and hybrid zero dynamics. Virtual constraints are relations on the
state variables of a mechanical model that are imposed through a time-invariant
feedback controller. One of their roles is to synchronize the robot's joints to
an internal gait phasing variable. A second role is to induce a low dimensional
system, the zero dynamics, that captures the underactuated aspects of a robot's
model, without any approximations. To enhance intuition, the relation between
physical constraints and virtual constraints is first established. From here,
the hybrid zero dynamics of an underactuated bipedal model is developed, and
its fundamental role in the design of asymptotically stable walking motions is
established. The chapter includes numerous references to robots on which the
highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte
Determination of the parameters of semiconducting CdF2:In with Schottky barriers from radio-frequency measurements
Physical properties of semiconducting CdF_2 crystals doped with In are
determined from measurements of the radio-frequency response of a sample with
Schottky barriers at frequencies 10 - 10^6 Hz. The dc conductivity, the
activation energy of the amphoteric impurity, and the total concentration of
the active In ions in CdF_2 are found through an equivalent-circuit analysis of
the frequency dependencies of the sample complex impedance at temperatures from
20 K to 300 K. Kinetic coefficients determining the thermally induced
transitions between the deep and the shallow states of the In impurity and the
barrier height between these states are obtained from the time-dependent
radio-frequency response after illumination of the material. The results on the
low-frequency conductivity in CdF_2:In are compared with submillimeter (10^{11}
- 10^{12} Hz) measurements and with room-temperature infrared measurements of
undoped CdF_2. The low-frequency impedance measurements of semiconductor
samples with Schottky barriers are shown to be a good tool for investigation of
the physical properties of semiconductors.Comment: 9 pages, 7 figure
- …