630 research outputs found
Light-Cone Distribution Amplitudes for the Light Mesons
We present a study of light-cone distribution amplitudes of the light
mesons. The first few Gegenbauer moments of leading twist light-cone
distribution amplitudes are calculated by using the QCD sum rule technique.Comment: 18 pages, 9 figures, v3: a sentence revised in the introduction, to
appear in JHE
Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories
This paper examines the nature of classical correspondence in the case of
coherent states at the level of quantum trajectories. We first show that for a
harmonic oscillator, the coherent state complex quantum trajectories and the
complex classical trajectories are identical to each other. This congruence in
the complex plane, not restricted to high quantum numbers alone, illustrates
that the harmonic oscillator in a coherent state executes classical motion. The
quantum trajectories are those conceived in a modified de Broglie-Bohm scheme
and we note that identical classical and quantum trajectories for coherent
states are obtained only in the present approach. The study is extended to
Gazeau-Klauder and SUSY quantum mechanics-based coherent states of a particle
in an infinite potential well and that in a symmetric Poschl-Teller (PT)
potential by solving for the trajectories numerically. For the coherent state
of the infinite potential well, almost identical classical and quantum
trajectories are obtained whereas for the PT potential, though classical
trajectories are not regained, a periodic motion results as t --> \infty.Comment: More example
B -> J/psi K^* Decays in QCD Factorization
The hadronic decay B -> J K^* is analyzed within the framework of QCD
factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the
transversity basis and their relative phases are studied using various
different form-factor models for B-K^* transition. The effective parameters
a_2^h for helicity h=0,+,- states receive different nonfactorizable
contributions and hence they are helicity dependent, contrary to naive
factorization where a_2^h are universal and polarization independent. QCD
factorization breaks down even at the twist-2 level for transverse hard
spectator interactions. Although a nontrivial strong phase for the A_\parallel
amplitude can be achieved by adjusting the phase of an infrared divergent
contribution, the present QCD factorization calculation cannot say anything
definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the
longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3
corrections and is not large enough to account for the observed branching ratio
and the fraction of longitudinal polarization. Possible enhancement mechanisms
for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos
correcte
Weak antiferromagnetism due to Dzyaloshinskii-Moriya interaction in BaCuOCl
The antiferromagnetic insulating cuprate BaCuOCl contains
folded CuO chains with four magnetic copper ions () per unit cell.
An underlying multiorbital Hubbard model is formulated and the superexchange
theory is developed to derive an effective spin Hamiltonian for this cuprate.
The resulting spin Hamiltonian involves a Dzyaloshinskii-Moriya term and a more
weak symmetric anisotropic exchange term besides the isotropic exchange
interaction. The corresponding Dzyaloshinskii-Moriya vectors of each magnetic
Cu-Cu bond in the chain reveal a well defined spatial order. Both, the
superexchange theory and the complementary group theoretical consideration,
lead to the same conclusion on the character of this order. The analysis of the
ground-state magnetic properties of the derived model leads to the prediction
of an additional noncollinear modulation of the antiferromagnetic structure.
This weak antiferromagnetism is restricted to one of the Cu sublattices.Comment: 13 pages, 1 table, 4 figure
Strong laser fields as a probe for fundamental physics
Upcoming high-intensity laser systems will be able to probe the
quantum-induced nonlinear regime of electrodynamics. So far unobserved QED
phenomena such as the discovery of a nonlinear response of the quantum vacuum
to macroscopic electromagnetic fields can become accessible. In addition, such
laser systems provide for a flexible tool for investigating fundamental
physics. Primary goals consist in verifying so far unobserved QED phenomena.
Moreover, strong-field experiments can search for new light but weakly
interacting degrees of freedom and are thus complementary to accelerator-driven
experiments. I review recent developments in this field, focusing on photon
experiments in strong electromagnetic fields. The interaction of
particle-physics candidates with photons and external fields can be
parameterized by low-energy effective actions and typically predict
characteristic optical signatures. I perform first estimates of the accessible
new-physics parameter space of high-intensity laser facilities such as POLARIS
and ELI.Comment: 7 pages, Key Lecture at the ELI Workshop and School on "Fundamental
Physics with Ultra-High Fields", 9 September - 2 October 2008 at Frauenworth
Monastery, German
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection
Bose condensates in a harmonic trap near the critical temperature
The mean-field properties of finite-temperature Bose-Einstein gases confined
in spherically symmetric harmonic traps are surveyed numerically. The solutions
of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for
the condensate and low-lying quasiparticle excitations are calculated
self-consistently using the discrete variable representation, while the most
high-lying states are obtained with a local density approximation. Consistency
of the theory for temperatures through the Bose condensation point requires
that the thermodynamic chemical potential differ from the eigenvalue of the GP
equation; the appropriate modifications lead to results that are continuous as
a function of the particle interactions. The HFB equations are made gapless
either by invoking the Popov approximation or by renormalizing the particle
interactions. The latter approach effectively reduces the strength of the
effective scattering length, increases the number of condensate atoms at each
temperature, and raises the value of the transition temperature relative to the
Popov approximation. The renormalization effect increases approximately with
the log of the atom number, and is most pronounced at temperatures near the
transition. Comparisons with the results of quantum Monte Carlo calculations
and various local density approximations are presented, and experimental
consequences are discussed.Comment: 15 pages, 11 embedded figures, revte
The triple-pomeron regime and the structure function of the pomeron in the diffractive deep inelastic scattering at very small x
Misprints and numerical coefficients corrected, a bit of phenomenology and
one figure added. The case for the linear evolution of the unitarized structure
functions made stronger.Comment: KFA-IKP(Th)-1993-17, Landau-16/93, 46 pages, 14 figures upon request
from N.Nikolaev, [email protected]
4f-spin dynamics in La(2-x-y)Sr(x)Nd(y)CuO(4)
We have performed inelastic magnetic neutron scattering experiments on
La(2-x-y)Sr(x)Nd(y)CuO(4) in order to study the Nd 4f-spin dynamics at low
energies. In all samples we find at high temperatures a quasielastic line
(Lorentzian) with a line width which decreases on lowering the temperature. The
temperature dependence of the quasielastic line width Gamma/2(T) can be
explained with an Orbach-process, i.e. a relaxation via the coupling between
crystal field excitations and phonons. At low temperatures the Nd-4f magnetic
response S(Q,omega) correlates with the electronic properties of the
CuO(2)-layers. In the insulator La(2-y)Nd(y)CuO(4) the quasielastic line
vanishes below 80 K and an inelastic excitation occurs. This directly indicates
the splitting of the Nd3+ ground state Kramers doublet due to the static
antiferromagnetic order of the Cu moments. In La(1.7-x)Sr(x)Nd(0.3)CuO(4) with
x = 0.12, 0.15 and La(1.4-x)Sr(x)Nd(0.6)CuO(4) with x = 0.1, 0.12, 0.15, 0.18
superconductivity is strongly suppressed. In these compounds we observe a
temperature independent broad quasielastic line of Gaussian shape below T about
30 K. This suggests a distribution of various internal fields on different Nd
sites and is interpreted in the frame of the stripe model. In
La(1.8-y)Sr(0.2)Nd(y)CuO(4) (y = 0.3, 0.6) such a quasielastic broadening is
not observed even at lowest temperature.Comment: 8 pages, 10 figures included, to appear in Phys. Rev.
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
- …