21 research outputs found

    Modification of position-effect variegation by competition for binding to Drosophila satellites

    No full text
    white-mottled (w(m4)) position-effect variegation (PEV) arises by translocation of the white gene near the pericentric AT-rich 1.688 g/cm(3) satellite III (SATIII) repeats of the X chromosome of Drosophila. The natural and artificial A•T-hook proteins D1 and MATH20 modify w(m4) PEV in opposite ways. D1 binds SATIII repeats and enhances PEV, presumably via a recruitment of protein partners, whereas MATH20 suppresses it. We show that D1 and MATH20 compete for binding to identical sites of SATIII repeats in vitro and that conditional MATH20 expression results in a displacement of D1 from pericentric heterochromatin in vivo. In the presence of intermediate levels of MATH20, we show that this displacement becomes selective for SATIII repeats. These results strongly suggest that the suppression of w(m4) PEV by MATH20 is due to a displacement of D1 from its preferred binding sites and provide additional support for a direct role of D1 in the assembly of AT-rich heterochromatin

    Cytogenetic characterization of the genome of mealybug Planococcus citri

    No full text
    Summary Mealybugs although being agriculturally harmful insects have been very poorly studied by modern cytogenetics techniques, and no cytotaxonomic criteria to distinguish between closely related species is available yet. In the mealybug Planococcus citri (2n=10) male and female individuals are both diploid, however in males, at the stage of blastula, the haploid chromosome set of paternal origin becomes heterochromatic, even though its complete inertia has been considered questionable. Here we present data on the cytogenetic characterization of the chromosomes of Planococcus citri. We report on (i) the fluorescence karyotype (D287/170), which to our knowledge is the first banded karyotype of a mealybug to be described; (ii) the chromosome localization of constitutive heterochromatin; (iii) the chromosome localization of rDNA sites; (iv) NORs activity. Our data also show, for the first time, that in the heterochromatic chromosome set ribosomal genes are still active

    Identification of novel non-autonomous CemaT transposable elements and evidence of their mobility within the C. elegans genome

    No full text
    We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed
    corecore