4 research outputs found
Characterization of human zona pellucida glycoproteins
The human egg may only be fertilized by one spermatozoon to prevent polyploidy. In most mammals, the primary block to polyspermy occurs at the zona pellucida (ZP). Little is known of the human ZP and the changes occurring following fertilization to prevent polyploidy. Using antibodies directed against synthetic peptides predicted from the human ZP2 and ZP3 cDNA, we identified ZP3 as a 53-60 kDa glycoprotein and ZP2 as a 90-110 kDa glycoprotein in prophase-I oocytes. Characterization of the ZP from metaphase II arrested eggs (inseminated-unfertilized and fertilized-uncleaved), shows no visible modification of ZP3, but demonstrates that ZP2 undergoes limited proteolysis in the amino terminal domain, to a 60-73 kDa species, denoted ZP2(p), which remains linked to the proteolysed fragments by intramolecular disulphide bonds. A lack of ZP2 proteolytic activity in acrosomal supernatants is consistent with an oocyte origin for the protease. The ZP2- specific protease may be released during cortical granule exocytosis which occurs during meiotic maturation and following sperm-egg fusion as part of the block to polyspermy. Since mouse ZP2 acts as a secondary sperm receptor, it is possible that intact ZP2 binds a secondary egg binding protein, whereas cleaved ZP2 does not, suggesting a possible mechanism for the block to polyspermy.Articl
The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition
Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity