741 research outputs found
Recommended from our members
Impact of tsetse control on land use in the semi-arid zone of Zimbabwe. Phase 2: Analysis of land use change by remote sensing imagery (NRI Bulletin 70)
Tsetse control is carried out to facilitate the expansion of livestock-based production systems in areas cleared of the threat of bovine trypanosomiasis. There is a growing awareness of the need for tsetse control to be considered an integral component of rural development and of the importance of monitoring and evaluating both the causes and consequences of potential land-use changes as a prerequisite for planning control operations. As part of an international programme to evaluate the environmental and socio-economic effects of tsetse control in southern Africa, changes in land cover over a 20-year period are being assessed in an area of Zimbabwe with a long and varied history of tetse control and agricultural development. The study area, adjacent to Lake Kariba, covers approximately 8300 km2 and comprises Reserved, Communal and State Lands. The first phase of the study established the baseline land-use and vegetation patterns, using satellite imagery. In Phase 2, changes in land cover, particularly human-dominated land use (HDLU), are examined from 1972 to 1993, using four Landsat TM and five MSS images, integrated with other datasets in ARC/INFO GIS
Heteroleptic samarium(III) halide complexes probed by fluorescence-detected L3-edge X-ray absorption spectroscopy
Addition of various oxidants to the near-linear Sm(II) complex [Sm(Nâ â )2] (1), where Nâ â is the bulky bis(triisopropylsilyl)amide ligand {N(SiiPr3)2}, afforded a family of heteroleptic three-coordinate Sm(III) halide complexes, [Sm(Nâ â )2(X)] (X = F, 2-F; Cl, 2-Cl; Br, 2-Br; I, 2-I). In addition, the trinuclear cluster [{Sm(Nâ â )}3(ÎŒ2-I)3(ÎŒ3-I)2] (3), which formally contains one Sm(II) and two Sm(III) centres, was isolated during the synthesis of 2-I. Complexes 2-X are remarkably stable towards ligand redistribution, which is often a facile process for heteroleptic complexes of smaller monodentate ligands in lanthanide chemistry, including the related bis(trimethylsilyl)amide {N(SiMe3)2} (NâČâČ). Complexes 2-X and 3 have been characterised by single crystal X-ray diffraction, elemental analysis, multinuclear NMR, FTIR and electronic spectroscopy. The Lα1 fluorescence-detected X-ray absorption spectrum recorded at the Sm L3-edge for 2-X exhibited a resolved pre-edge peak defined as an envelope quadrupole-allowed 2p â 4f transition. The X-ray absorption spectral features were successfully reproduced using time-dependent density functional theoretical (TD-DFT) calculations that synergistically supports the experimental observations as well as the theoretical model upon which the electronic structure and bonding in lanthanide complexes is derived
High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam
Presently large efforts are conducted towards the development of highly
brilliant gamma beams via Compton back scattering of photons from a
high-brilliance electron beam, either on the basis of a normal-conducting
electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly
ERL's provide an extremely brilliant electron beam, thus enabling to generate
highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity
of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility,
narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2)
offers the possibility to produce a high-intensity bright polarized positron
beam. Pair production in a face-on irradiated W converter foil (200 micron
thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per
second, which is four orders of magnitude higher compared to strong radioactive
^22Na sources conventionally used in the laboratory.Using a stack of converter
foils and subsequent positron moderation, a high-intensity low-energy beam of
moderated positrons can be produced. Two different source setups are presented:
a high-brightness positron beam with a diameter as low as 0.2 mm, and a
high-intensity beam of 3 x 10^11 moderated positrons per second. Hence,
profiting from an improved moderation efficiency, the envisaged positron
intensity would exceed that of present high-intensity positron sources by a
factor of 100.Comment: 9 pages, 3 figure
Elastic moduli of model random three-dimensional closed-cell cellular solids
Most cellular solids are random materials, while practically all theoretical
results are for periodic models. To be able to generate theoretical results for
random models, the finite element method (FEM) was used to study the elastic
properties of solids with a closed-cell cellular structure. We have computed
the density () and microstructure dependence of the Young's modulus ()
and Poisson's ratio (PR) for several different isotropic random models based on
Voronoi tessellations and level-cut Gaussian random fields. The effect of
partially open cells is also considered. The results, which are best described
by a power law (), show the influence of randomness
and isotropy on the properties of closed-cell cellular materials, and are found
to be in good agreement with experimental data.Comment: 13 pages, 13 figure
Two-loop corrections to the decay rate of parapositronium
Order corrections to the decay rate of parapositronium are
calculated. A QED scattering calculation of the amplitude for electron-positron
annihilation into two photons at threshold is combined with the technique of
effective field theory to determine an NRQED Hamiltonian, which is then used in
a bound state calculation to determine the decay rate. Our result for the
two-loop correction is in units of times the
lowest order rate. This is consistent with but more precise than the result
of a previous calculation.Comment: 26 pages, 7 figure
Operational sex ratio, sexual conflict and the intensity of sexual selection.
Modern sexual selection theory indicates that reproductive costs rather than the operational sex ratio predict the intensity of sexual selection. We investigated sexual selection in the polygynandrous common lizard Lacerta vivipara. This species shows male aggression, causing high mating costs for females when adult sex ratios (ASR) are male-biased. We manipulated ASR in 12 experimental populations and quantified the intensity of sexual selection based on the relationship between reproductive success and body size. In sharp contrast to classical sexual selection theory predictions, positive directional sexual selection on male size was stronger and positive directional selection on female size weaker in female-biased populations than in male-biased populations. Thus, consistent with modern theory, directional sexual selection on male size was weaker in populations with higher female mating costs. This suggests that the costs of breeding, but not the operational sex ratio, correctly predicted the strength of sexual selection
Learning Two-input Linear and Nonlinear Analog Functions with a Simple Chemical System
The current biochemical information processing systems behave in a predetermined manner because all features are defined during the design phase. To make such unconventional computing systems reusable and programmable for biomedical applications, adaptation, learning, and self-modification baaed on external stimuli would be highly desirable. However, so far, it haa been too challenging to implement these in real or simulated chemistries. In this paper we extend the chemical perceptron, a model previously proposed by the authors, to function as an analog instead of a binary system. The new analog asymmetric signal perceptron learns through feedback and supports MichaelisMenten kinetics. The results show that our perceptron is able to learn linear and nonlinear (quadratic) functions of two inputs. To the best of our knowledge, it is the first simulated chemical system capable of doing so. The small number of species and reactions allows for a mapping to an actual wet implementation using DNA-strand displacement or deoxyribozymes. Our results are an important step toward actual biochemical systems that can learn and adapt
Metallicity and its low temperature behavior in dilute 2D carrier systems
We theoretically consider the temperature and density dependent transport
properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann
transport theory, taking into account realistic screened charged impurity
scattering in the semiconductor. We derive a leading behavior in the transport
property, which is exact in the strict 2D approximation and provides a zeroth
order explanation for the strength of metallicity in various 2D carrier
systems. By carefully comparing the calculated full nonlinear temperature
dependence of electronic resistivity at low temperatures with the corresponding
asymptotic analytic form obtained in the limit, both within the
RPA screened charged impurity scattering theory, we critically discuss the
applicability of the linear temperature dependent correction to the low
temperature resistivity in 2D semiconductor structures. We find quite generally
that for charged ionized impurity scattering screened by the electronic
dielectric function (within RPA or its suitable generalizations including local
field corrections), the resistivity obeys the asymptotic linear form only in
the extreme low temperature limit of . We point out the
experimental implications of our findings and discuss in the context of the
screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and
figures including a detailed comparison to a recent experimen
Tourism Destination Management: A Collaborative Approach
Collaboration is a key factor of sustainable growth across territories and industrial sectors. Tourism, one of the largest industries in the world, has been subject to strongest innovation in the last years. Main reasons of this reside both in the availability of new ICTs - Information and Communication Technologies - and organizational models, which directly connect tourists among them and with service providers, and in the always more personalized supply of tourism experience. Tourism destinations can benefit of such innovations if they are able to reorganize the territorial tourism offer around different pattern of collaboration in order to give 2.0 tourists opportunities to live an augmented tourism experience. This paper deals with the possible forms of collaborative networks that can rise within a destination with a focus on relationships between services delivered by the Tourism Destination and the requests of services at the different phases of the tourist 2.0 lifecycle
- âŠ