12 research outputs found

    Quantum Parrondo's Games

    Full text link
    Parrondo's Paradox arises when two losing games are combined to produce a winning one. A history dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state, a superposition of qubits can be used to couple the games and produce interference leading to quite different payoffs to those in the classical case.Comment: LateX, 10 pages, 2 figures, submitted to Physica A special issue (Gene Stanley Conference, Sicily, 2001), v2 minor correction to equations, v3 corrections to results section and table, acknowledgement adde

    Quantum Bayesian implementation

    Get PDF
    Bayesian implementation concerns decision making problems when agents have incomplete information. This paper proposes that the traditional sufficient conditions for Bayesian implementation shall be amended by virtue of a quantum Bayesian mechanism. In addition, by using an algorithmic Bayesian mechanism, this amendment holds in the macro world.Comment: 14 pages, 3 figure

    Symbolic Algebra and Renormalization of Gauge Theories

    Get PDF
    Symbolic algebra relevant to the renormalization of gauge theories can be efficiently performed by machine using modern packages. We devise a scheme for representing and manipulating the objects involved in perturbative calculations of gauge theories. This scheme is readily implemented using the general purpose package, Mathematica. The techniques discussed are used to calculate renormalization group functions for a non-abelian SU(m)SU(m) gauge theory with massless fermions in a representation R, in the two-loop approximation, and to simplify some expressions arising in electroweak calculations at the two loop level.Comment: 16 pages, LaTex, 2 diagrams drawn with FEYNMAN, uses cite.sty Entire manuscript available as a ps file at http://www.physics.adelaide.edu.au/theory/home.html Also available via anonymous ftp at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-95-41.T193.ps Accepted for publication in Computer Physics Communicatio

    Quantum games of asymmetric information

    Full text link
    We investigate quantum games in which the information is asymmetrically distributed among the players, and find the possibility of the quantum game outperforming its classical counterpart depends strongly on not only the entanglement, but also the informational asymmetry. What is more interesting, when the information distribution is asymmetric, the contradictive impact of the quantum entanglement on the profits is observed, which is not reported in quantum games of symmetric information.Comment: 5 pages, 3 figure

    Quantum models of Parrondo's games

    No full text
    ©2003 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.It is possible to have two games that are losing when played in isolation but that, because of some form of feedback, produce a winning game when played alternately or even in a random mixture. This effect is known as Parrondo's paradox. Quantum mechanics provides novel methods of combining two games through interference and entanglement. Two models of quantum Parrondo's games have been published and these are reviewed here. We speculate on a model of a quantum Parrondo's game using entanglement. Such games could find a use in the development of algorithms for quantum computers.Adrian P. Flitney and Derek Abbot
    corecore