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Abstract

Symbolic algebra relevant to the renormalization of gauge theories can be ef-

�ciently performed by machine using modern packages. We devise a scheme for

representing and manipulating the objects involved in perturbative calculations of

gauge theories. This scheme is readily implemented using the general purpose pack-

age, Mathematica. The techniques discussed are used to calculate renormalization

group functions for a non-abelian SU(m) gauge theory with massless fermions in a

representation R, in the two-loop approximation, and to simplify some expressions

arising in electroweak calculations at the two loop level.

Correspondence to A.P. Flitney at the address given

E-mail: aitney@physics.adelaide.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Perturbation theory has been an important calculational method in quantum �eld theory

for several decades. However the practical usefulness of perturbation theory is limited

mainly by the rapid rise in the amount of labour required to improve the order of approx-

imation. For instance, the renormalization group functions can be calculated analytically

to three loops in non-abelian gauge theory, which requires the evaluation of 440 three

loop diagrams, and to �ve loops in ��4 theory [1, 2]. The non-numerical nature of such

perturbative calculations in quantum �eld theory has complicated the e�ort to automate

these calculations. However, the development of specialised computer algebra systems [3]

and improvements in general purpose computer algebra systems have greatly facilitated

this task [4{9].

In devising a scheme for the perturbative calculation of amplitudes in quantum �eld

theory the main areas which need to be developed are:

� The perturbation expansion itself,

� Lorentz tensor, Dirac and symmetry group algebra, and

� Feynman integration.

The perturbation expansion is either a Dyson-Wick expansion in the canonical formalism
or equivalently an expansion of the generating functional in the path integral formalism.
The perturbation expansion will not concern us here, nor will we be concerned with
automating symmetry group algebra which is simple for all cases of interest to us. Our
focus will be on Lorentz tensor and Dirac algebra, and on Feynman integration.

There are a number of existing packages that tackle the problem of Dirac algebra
computations [4{6, 8]. The symbolic evaluation of Feynman diagrams at tree level [6]
and one loop [9] have been approached using Wolfram's computer algebra package Math-
ematica [10]. Fleischer and Tarasov [7] present a package for the evaluation of certain
two loop Feynman integrals written in the computer algebra language FORM [11], while

symbolic three loop calculations [12] have also been carried using FORM. The current
paper presents a package that combines a method for simplifying the Dirac algebra with
procedures for evaluating massless scalar or tensor Feynman integrals at one or two loops,

and is implemented in Mathematica.
The following sections discuss our scheme for representing Feynman diagrams. The

scheme is essentially a de�nition of a notation that can be readily expressed in Mathemat-
ica. Section two introduces the notational scheme, section three will discuss some aspects

of rules which have been encoded to simplify and integrate expressions, and section four
demonstrates the evaluation of some speci�c diagrams. Usage messages for functions

de�ned by us can be found in the appendix.
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2 Notational Scheme

In this section it will be shown how one can use the symbolic algebra capabilities of Math-

ematica to represent and simplify the various types of tensorial and matrix expressions

that arise in amplitudes of gauge theories. This is based upon a suitable notation for

dimensionally continued tensors and Dirac gamma matrices. The aim is to establish a

notation that can be readily accommodated by the symbolic capabilities of Mathematica.

Dirac algebra can be performed without reference to any representation of the Dirac ma-

trices, by using the commutation relations which de�ne the algebra and identities derived

from those relations, along with the rules of matrix multiplication. Tensor manipulations

are also readily implemented symbolically. As we are interested in evaluating ampu-

tated one particle irreducible amplitudes which have been regularised using dimensional

regularisation [13], no explicit representation of Dirac gamma matrices is necessary.

The �rst step is to separate symbols which will represent four-vectors from symbols

which will represent tensor indices. We generally use one or more lower case letters

and numerals which are not otherwise de�ned, such as a,k,p1 ... for four-vectors and

indices. The two types of symbols can be distinguished by declaring a list of symbols

which will represent four-vectors. Any symbols which appear that are not in this list
and are not otherwise de�ned shall be understood to represent a Lorentz index, and
need not be declared. These symbols will appear only as the arguments of Mathematica
expressions. The expressions themselves will represent Dirac matrices, Lorentz scalars,
four-vectors and tensors depending on the symbols that appear in their arguments. We

give the list of declared four vectors the name momenta.
To illustrate this scheme assume momenta = fk,p,qg throughout the rest of this

section. This list may be enlarged at any time provided symbols that have already been
used as Lorentz indices are not included. Let the function g, a symmetric function of two
arguments, denote the object that will carry the properties of the metric tensor. What

g actually represents will depend on its arguments as follows:

1. g[a,b] represents the metric tensor with Lorentz indices a and b, because a and
b are not in the list fk,p,qg,

2. g[a,k] represents the four-vector k with Lorentz index a, because only k is in the
list fk,p,qg, and

3. g[k,p] represents the scalar product of the four-vectors k and p which are both in

fk,p,qg.

Products of gamma matrices are represented by a function d of any non-zero number of
arguments. Again, what d represents depends on the arguments. Wherever there appears
an argument that is a member of momenta the corresponding matrix is the contraction of

the gamma matrix in that position with the four-vector. Otherwise the matrix is simply

a gamma matrix with the symbol denoting a Lorentz index. For example, the object
d[a,b,k,p,b,d,k,q] denotes

�� 6k 6p � 
� 6k 6q: (1)
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Free Lorentz indices appearing as arguments of g and d can represent contravariant or

covariant indices. In renormalizing quantum �eld theories we consider only amputated

amplitudes. Information about components of four-vectors and matrices is not required.

Thus the distinction between contravariant and covariant components is not important

here. One simply takes the rank structure of the �nal expression to be that of the input

expression. If one wishes to consider expressions which included external lines then one

would need to distinguish between contravariant and covariant indices. This could be

done by declaring all covariant indices in a list which one may call covariant. Then

symbols which appear in neither of momenta or covariant and were not otherwise de�ned

would implicitly represent contravariant indices.

Traces of products of gamma matrices can be denoted by a function trace whose

argument is a linear combination of products of gamma matrices. This function will

automatically convert the trace of a linear combination to the linear combination of

traces before any traces are evaluated.

Other tensors may be represented by other functions with the rank structure given

implicitly by the arguments. For example one may wish to manipulate the Levi-Civita

tensor in four dimensions. One would de�ne a function e depending on four arguments.

Then, for example e[a,b,u,v] would represent

����� (2)

and e[a,b,k,p] would represent
�����k�p� : (3)

The mass of a particle is represented by the function M[x] where x is a label for the
convenience of the user and is not used by the program. Similarly, other scalars are rep-
resented by the function scalar[x]. The left and right helicity projection operators are
represented by L and R, respectively. The matrix 5 has not been explicitly represented,

nor have traces involving 5 been implemented. However the de�nitions could be easily
extended if traces involving 5 were required (see for example [9]).

Manipulation and simpli�cation of expressions can be performed by machine using
pattern recognition, procedural programming, rule based programming and functional
programming all of which are supported by Mathematica. One can perform basic ma-

nipulations such as

� contracting repeated indices in tensor expressions,

� simplifying an expression of the form ��1 : : : �j�

� commuting a gamma matrix through one or more gamma matrices,

� the evaluation of the trace of any number of gamma matrices, and

� evaluation of Feynman integrals

4



and any other lengthy algebraic manipulation that would be prohibitively tedious to

perform manually. Some of the rule de�nitions which are useful for the manipulations

described are illustrated in the next section. Note that the system function Dot has been

used in place of d for products of gamma matrices. This function will perform matrix

multiplication when explicit matrices in component form are placed in its arguments.

Since we require no representation for the gamma matrices and thus only symbols appear

as its arguments, the function Dot will simply represent non-commutative multiplication

and one can assign rules required to invoke the various properties of Dirac algebra which

are required. We have chosen to use Dot for this purpose because a convenient input

notation

Dot[a1; a2; : : :] � a1:a2: : : : (4)

is available. Since Dot has the attribute OneIdentity the expression Dot[a] is equivalent

to a where Head[a] = Symbol. Hence a solitary symbol which is otherwise unde�ned

represents a single gamma matrix.

Together with symbols i for the imaginary unit, n for the number of space-time

dimensions, and eps = 4-n, this scheme is su�cient to represent any amputated diagram
in a gauge theory. In the next section we will discuss how to manipulate, simplify, and
integrate expressions within this scheme.

3 Implementation of Symbolic Algebra

We will begin by discussing expressions representing Lorentz tensors. This will be fol-

lowed with Dirac algebra and expressions involving both gamma matrices and tensors,
and traces of gamma matrices. Finally the evaluation of two-loop Feynman integrals will
be discussed. In evaluating Lagrangian counterterms, which in turn give renormaliza-
tion group functions, we are interested in the pole part of amputated diagrams. This
necessitates the evaluation of Laurent expansions and some points relating to this will be

discussed briey.
The metric of n-dimensional Minkowski space is represented by the symmetric func-

tion g with two arguments,

Attributes[g] = fOrderlessg (5)

g[x ; x ] := n =; FreeQ[momenta; x] (6)

g[a ; b ]̂ 2 := n

=; FreeQ[momenta;a] && FreeQ[momenta;b] (7)

g[a ; b ]̂ 2 := g[b; b]

=; FreeQ[momenta; a] && MemberQ[momenta; b] (8)

Note that the action of the rules is conditional upon whether or not one or both arguments
are in the list momenta. In conventional notation the rules stated are

g�� = n (9)
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g��g�� = n (10)

b�b� = b2 (11)

where b is a vector. Rules can be applied at the discretion of the user by de�ning new

functions which act on tensors. For example the relations

g��g�� = ��� (12)

b�g�� = b� (13)

can be implemented by

cc[x ; a ; b ; s ] := x =: g[a; s] g[s; b] ! g[a; b]

=; FreeQ[momenta; s] (14)

Note that in this notation both (12) and (13) are embodied in one rule. Functions

can appear in the de�nitions of functions. For instance, a function which contracts

all occurrences of a repeated index is valuable. Suppose all the arguments of g in an

expression x are placed in a list called args except for one repeated index s. We have

de�ned a function, contract[x, args, s], which will perform all contractions of the
repeated index s in x. The de�nition of contract involves two other functions, cc which

controls the actual replacement that is made, and ll which takes a list of symbols and
returns a list of all pairs of those symbols. Extending this further, we have de�ned a
function, contractall[x, repeated, other], which takes an expression x, a list of
all repeated indices placed in the second argument, and a list of all remaining arguments
of g in x in the third argument and performs the contraction of all repeated indices. The

de�nition of this function is in terms of contract.
As for g, rules are assigned to Dot to automatically implement properties of matrix

algebra. Note that since Dot is a system function it must be unprotected before rules can
be added to its de�nition. The rules we de�ne for Dot are applied automatically to any
input expression until no further changes occur. These rules correspond to properties such
as the distributive law over addition and scalar multiplication. We have chosen to use

the symbol J to denote the identity matrix. Expressions which represent a combination
of tensors and gamma matrices will involve both g and Dot. In cases where a Lorentz
index appears in an argument of both g and Dot the index may be contracted out of the
expression. A function slash is de�ned in the appendix which performs this task.

Identities, such as commutation relations can be applied at the discretion of the user

by de�ning functions which take an expression, search for a speci�ed pattern and replace
the pattern by an equivalent expression. For example, the commutation relations

�� = ��� + 2g�� (15)

��� = ��� + 2�g�� � 2�g�� (16)

are applied by the function comm, de�ned as

comm[x ; a ; b ] := x =: a:b! b:a + 2J g[a; b] (17)

comm[x ; a ; b ; c ] := x =: a:b:c! b:c:a + 2c g[a; b] � 2b g[a; c] (18)
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Which of the two rules is applied depends on how many arguments are passed to comm.

Note that the rules are valid whether or not any of a, b and c appear in the list momenta.

Further rules have been de�ned for commuting through more than two gamma matrices,

and another function called rcomm for commuting in the reverse order. Rules which apply

identities for expressions of the form

��1 : : : �j
� (19)

k=�1 : : : �j
k= ; j = 1; 2; 3; : : : (20)

have been similarly de�ned. For instance

con[x ; a ] := If [ MemberQ[momenta;a] ;

x =: a:a! g[a; a] J;

x =: a:a! n J

] (21)

con[x ; a ; b ] := If [MemberQ[momenta; a] ;

x =: a:b:a! �b g[a; a] + 2a g[a; b];

x =: a:b:a! (2� n) b

] (22)

The answer is dependent on whether or not the repeated symbol a appears in the list

momenta. Rules for j > 1 can be included as needed.
To simplify expressions involving helicity projection operators, the functions movel

and mover have been de�ned. They, respectively, move the helicity projection operators
to the left or to the right in each term in an expression.

The trace of an arbitrary linear combination of products of gamma matrices can be

evaluated using the linearity property of traces and the recursive relation

Tr(�1�2) = 4g�1�2 (23)

Tr(�1 : : : �2j ) =
2j�2X
l=o

(�1)lg�1�2j�lTr(�2 : : : ̂�2j�l : : : �2j ) (24)

Tr(�1 : : : �2j+1) = 0 (25)

where the hat over the gamma matrix denotes its absence [9]. The function trace will

�rstly convert the trace of a linear combination into a linear combination of traces, and

then applies a function tr which makes use of the recursion relation (24) to evaluate the

traces. Note that tr �rst checks that the length of the product is even and returns zero
if it is not. The case of a product of two gamma matrices acts as an initial condition.

The scheme described so far can be used to represent any Feynman integral which can
arise in a gauge theory. A means of evaluating the integrals would complete a scheme
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for the evaluation of amputated Feynman diagrams. We will present a simple procedure

which can be adapted to all cases.

We begin by considering integrals of the form

��

Z
dnq

(2�)n
q�q� : : :

(q2)j((q � p)2)l
(26)

and

��

Z
dnq

(2�)n
q=q�q� : : :

(q2)j((q � p)2)l
(27)

where � is an arbitrary mass scale, q is the integration variable and the rank of the tensor

in the numerator is usually less than or equal to 3. The factor �� is introduced to ensure

that the integral is dimensionless for any n (hence � depends on n). This is su�cient for

most two loop calculations but if rules for the integration of higher rank expressions are

needed, then extra rules can be included.

The main consideration in de�ning an integration function is to be certain that there

is no residual dependence on the integration variable in the �nal expression. For example,
a function could be de�ned which searches for the pattern

1

g[q; q] g[q+ p; q+ p]
(28)

and replaces it using a replacement rule. If that function were then applied to a pattern
like

T[q]

g[q; q] g[q+ p; q+ p]
(29)

the integration function would treat this as a product of two factors

T[q]
1

g[q; q] g[q+ p; q+ p]
(30)

and replace only the second factor, leaving T[q] in the resulting expression. Hence it is
important to check the �nal expression for the presence of the integration variable.

In the integrals (26) and (27) there are other considerations. The rank, the symbols
used for indices, the integration variable, the parameter p, and the powers j and l should

all be variables which can be passed to the integrating function. We have de�ned functions

inttensor and intgamma which will return the integrals of (26) and (27) respectively.
The arguments to be passed to inttensor and intgamma are

inttensor[x; q; p; a; b; : : : ; j; l] (31)

and

intgamma[x; q;p; a;b; : : : ; j; l]; (32)

where x is the expression to be integrated, q is the integration variable, p is the four-
momentum parameter, a,b,... are Lorentz indices, and j and l are the powers in

8



the denominator. Again the de�nitions of inttensor and intgamma consist of a limited

series of rules. Which of the rules is applied depends on the number of arguments passed

to inttensor and intgamma. If the rules do not cover cases of high rank that may

be needed then new rules may be included as needed. Rank three integrals are usually

su�cient for most two-loop calculations. Integrals involving non-zero masses have not

been implemented, though a function for these could be de�ned.

Dimensionally regularised integrals can be expanded as a Laurent series in � =

4 � n. In general an integral over l four vectors will have a leading pole of order ��l.

To evaluate counterterms only pole parts of the Laurent expansions of integrals need be

evaluated. A table of pole parts of integrals can be prepared with the help of inttensor

and intgamma. This table can then be used to evaluate the pole parts of diagrams and

hence the counterterms. The integrals required for this can be classi�ed according to

the form of the denominators of the Feynman integrals. For example, to calculate the

two-loop boson self energy in a SU(m) gauge theory with massless fermions there is just

one class of integrals as the Feynman integral is always of the form

��

Z
q;k

T��(q; k; p)

q2(q + p)2k2(k + p)2(k � q)2
(33)

where p is the external momentum, and T��(q; k; p) is a rank-2, dimension 4 tensor

constructed from q, k, and p. There are 75 distinct possibilities for T�� but fortunately
many of the corresponding integrals are related, and the number of independent integrals
is reduced to about 10. If we are interested only in the pole parts then we can express
any integral of the form (33) in terms of the pole parts of just four integrals. We choose
the four integrals where T��(q; k; p) is either

t��(p)(q + p)2 (34)

or
t��(p)(k � q)2 (35)

and t��(p) is either p�p� or g��p
2.

In the integrals discussed we have represented the Euler gamma function by gam[x].

For the evaluation of pole parts of one-particle irreducible amplitudes one must be able
to perform the Laurent expansions. This can be done by either replacing gam with the

system de�ned version of the Euler gamma function and using such functions as Series,

or by de�ning a su�cient set of rules for gam to evaluate the expansion.

4 Examples

As an illustration of the application of this work to some speci�c examples, we will briey
discuss the evaluation of the integral

�2(4�n)
Z

dnq

(2�)n
dnk

(2�)n
1

k2(k + p)2q2(q � k)2
(36)
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the evaluation of the diagram shown in �gure ??, and the simpli�cation of the diagram

in �gure ??. Diagram ?? is a contribution to the gauge boson self energy in the presence

of massless fermions in some representation R of the gauge group. The diagram ??

represents a contribution to the quark-photon vertex in the Weinberg-Salam model.

Before evaluating the integral (36) we must �rst declare the list of four-vector symbols

as

momenta= fk; p; q; k+ p; q+ p; k� q; q� kg (37)

Then we specify the integrand by

x =
1

g[k; k] g[k+ p; k+ p] g[q; q] g[q� k; q� k]
(38)

The integral over q is performed using inttensor,

x = inttensor[x;q; k;1; 1] (39)

which results in an expression depending on the integration variable k. The integrand
of this expression is proportional to

1

(g[k; k])1+
eps

2 g[k+ p; k+ p]
(40)

and can also integrated by using inttensor as follows.

x = inttensor[x; k;p; 1+ eps=2; 1] (41)

The resulting expression is

�(22eps mu2eps pi�4+ eps gam[1� eps] gam[1� eps

2
] gam[eps

2
] gam[eps])

256 (�1)eps g[p; p]epsgam[2� 3eps

2
] gam[2� eps] gam[1+ eps

2
]

(42)

where mu is the introduced mass scale �, and this can be Laurent expanded to order ��1.

We obtain
�2 + 2 elog � 5 eps

256 eps2 pi4
+ O(eps)0 (43)

where

elog = egam� log

 
4 pi mu2

�g[p; p]

!
(44)

and egam = 0.577... is Euler's constant. This gives the result for two of the four
integrals required to determine the pole part of (33) and the remaining integrals can be

evaluated similarly. Then to integrate the expression (33) we �rst replace the integrand

with an expression that has the same pole part and then replace the integrals with the
Laurent expansions. The functions we have de�ned to do this are samepole and poleform

respectively.
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To evaluate the diagram of �gure ?? we declare the momenta list to be (37), and

de�ne some initial expressions. In the notation of our scheme they are the coe�cient of

the integral, the numerator and denominator of the integrand. The coe�cient is

coefficient=
i

2
g4 C[G] T[R] delta[a; b] (45)

where a and b are gauge group indices, delta is the delta symbol and C[G] and T[R] are

gauge group factors. The numerator of the integrand has two factors

y = (g[p; a] � g[k; a]) g[u; l] + (2g[k; u] + g[p; u]) g[l; a]�

(2g[p; l] + g[k; l]) g[a;u] (46)

and

z = trace[a:(p+ q):v:q:l:(k� q)] (47)

and the denominator is

denominator= g[q; q] g[q+ p; q+ p] g[k; k] g[k+ p; k+ p] g[k� q; k� q] (48)

In the numerator there are two repeated indices. We set repeated= fa; lg; other = fu; v; k; p; qg

and x = Expand[y z] and remove the repeated indices from x using contractall,

x = contractall[x;repeated;other] (49)

All scalar products are then eliminated using preps and prepd which make use of iden-

tities such as

k:p =
1

2
((k + p)2 � k2 � p2): (50)

The resulting expression for x consists of 69 terms. We then replace x with an expression
with the same pole part using samepole. The result is divided by denominator and

the Laurent expansion is evaluated by applying poleform. Simplifying the result and
multiplying by coefficient gives the �nal result for the diagram

�(g4 i C[G] T[R] TR[J] delta[a; b]

((�48 � 76eps + 48 elog eps) g[p; u] g[p;v] +

(12 � 59 eps � 12 elog eps) g[p; p] g[u; v]))=(55296 eps2pi4) (51)

where TR[J] is the trace of the spin identity matrix.

We have used our scheme to evaluate the gauge boson, fermion and ghost anomalous

dimensions to two loops. We have also calculated the coupling constant renormalization
by evaluating the gauge boson - ghost vertex, and evaluated the Callan-Symanzik beta
function. Our results are in complete agreement with [14] for these calculations.

Now consider the diagram in �gure ??, which is a two loop diagram contributing to the

quark-photon vertex. The one loop, avour-changing quark self energy, with momentum
p can be written as

Ap=L +B p=R + C L+DR (52)
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where A;B;C and D are scalars depending upon p2 and the quark masses. After de�ning

momenta= fk; pg (53)

the numerator of the diagram in �gure ?? is proportional, in our notation, to

x = alpha : L : (p+ k+ M[s]) : (scalar[A] (p + k) : L+ scalar[B] (p + k) : R

+scalar[C] L+ scalar[D] R) : (p+ k+ M[d]) : mu : (p� k+ M[d]) :

alpha:L (54)

The masses are implicitly multiplied by the identity matrix. To simplify this we �rst

apply

x = movel[x] (55)

Then repeated application of the function con will do the contractions over � and con-

tract the pairs of k='s and p='s. For example, the following does all possible contractions

over k= and p=.

x = con[x; p] ; x = con[x; k] ; x = con[x; p; mu] ;

x = con[x; k; mu] ; x = con[x; p; k] ; x = con[x; k; p] ;

x = con[x; p; mu] ; x = con[x; k; mu] (56)

A further seven applications of con are necessary to do all the contractions over �. In
the resulting expression, repeated use of comm

x = comm[x; p; k] ; x = comm[x; p;mu] ; x = comm[x; k; mu] ;

x = comm[x; p;k] (57)

followed by collecting with respect to Dot, produces a �nal expression of four terms,
proportional to R�k=p=, R�, Rk= and Rp=. The full expression has seventy-six terms when
expanded and is too long to reproduce here.

5 Conclusion

We have presented a scheme for representing amputated Feynman diagrams beyond tree
level in terms of Mathematica expressions and have shown how the algebra involved in
simplifying these expressions and evaluating the integrals can be automated using the

symbolic algebra capacity of Mathematica. This scheme is based upon the speci�cation
of a su�ciently convenient notation for Lorentz tensors and Dirac algebra. An automatic

procedure for the evaluation of pole parts for dimensionally regularised massless Feynman
integrals has been used to evaluate two loop counterterms in a non-abelian gauge theory

with fermions and for the simpli�cation of amputated amplitudes in the Weinberg-Salam
model. The methods used in this paper can be readily extended to handle integrals of

higher loop order, and integrals involving masses. Our approach succeeds in eliminating

all tedious hand calculations. The time required to perform calculations automatically

is generally small compared to the time required to prepare input and organise a calcu-

lational sequence.
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7 Appendix

This appendix contains the usage messages for functions described in this article.

The following usage messages are for functions which simplify products of Dirac

gamma matrices.

comm::usage = "comm[x, a, b1, b2, ...] commutes a to the

right through b1.b2 ...wherever the pattern a.b1.b2 ...

appears in x (up to 5 b's programmed)."

rcomm::usage = "rcomm[x, b1, b2, ..., a] commutes a to

the left through b1.b2 ...wherever the pattern b1.b2 ....a

appears in x (up to 5 b's programmed)."

con::usage = "con[x, a, b1, b2, ...] evalates a.b1.b2 ....a

by contracting out the a's. Replacement made wherever the

pattern appears in x (Up to 6 b's programmed)."

trace::usage = "trace[x] evaluates the trace of a linear

combination of products of gamma matrices that does not

include gamma 5."

movel::usage = "movel[x] commutes all helicity projection

operators to the left most position in each term in the

expression x."

mover::usage = "mover[x] commutes all helicity projection

operators to the right most position in each term in the

expression x."

The following usage messages are for functions which simplify Lorentz tensors.

contract::usage = "contract[x, other, s] will eliminate

repeated index s from x. A list other, of all other

symbols appearing in the arguments of g's must be passed

to the function."

contractall::usage = "Given a list of repeated indices,

repeated, and a list, other, of any indices appearing in

the arguments of g's that are not in repeated,

contractall[x, repeated,other] will eliminate all

of the repeated indices from x."
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slash::usage = "slash[x, a, b] finds all patterns of the

form c1.c2. ....ci.a.d1.d2. ....dj*g[a,b] in x and

replaces them with c1.c2. ....ci.b.d1.d2. ....dj

where either or both of i and j may be zero."

preps::usage = "preps[x, k, p] replaces g[k, p] by

(g[k+p, k+p] - g[k, k] - g[p, p])/2 everywhere in x."

prepd::usage = "prepd[x, k, p] replaces g[k, p] by

(g[p, p] + g[k, k] -g[k-p, k-p])/2 everywhere in x."

The following usage messages are for functions which perform Feynman integration.

inttensor::usage = "inttensor[x, q, p, a, b, ..., j, l]

integrates tensors (g[q, a] g[q, b] ...)/(g[q, q]̂ j g[q �

p, q � p]̂ l) of low rank, where the integration variable

q, external momentum p, powers j and l, and indices

a,b ...are specified in the arguments of inttensor."

intgamma::usage = "intgamma[x, q, p, a, b, ..., j, l]

integrates matrices (q g[q, a] g[q, b] ...)/(g[q, q]̂ j g[q

� p, q � p]̂ l) of low rank, where the integration

variable q, external momentum p, powers j and l, and

indices a,b ...are specified in the arguments of intgamma."

samepole::usage = "samepole[x, p] replaces x, the numerator

of a Feynman integral for a gauge boson self energy diagram

with a simpler expression that has the same pole

part (p is the external momentum)."

poleform::usage = "poleform[x, p] evaluates the pole part

of x, a Feynman integral for a gauge boson self energy

diagram, after samepole has been applied to the numerator."
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