20 research outputs found

    O(N) and RP^{N-1} Models in Two Dimensions

    Get PDF
    I provide evidence that the 2D RPN1RP^{N-1} model for N3N \ge 3 is equivalent to the O(N)O(N)-invariant non-linear σ\sigma-model in the continuum limit. To this end, I mainly study particular versions of the models, to be called constraint models. I prove that the constraint RPN1RP^{N-1} and O(N)O(N) models are equivalent for sufficiently weak coupling. Numerical results for their step-scaling function of the running coupling gˉ2=m(L)L\bar{g}^2= m(L) L are presented. The data confirm that the constraint O(N)O(N) model is in the samei universality class as the O(N)O(N) model with standard action. I show that the differences in the finite size scaling curves of RPN1RP^{N-1}i and O(N)O(N) models observed by Caracciolo et al. can be explained as a boundary effect. It is concluded, in contrast to Caracciolo et al., that RPN1RP^{N-1} and O(N)O(N) models share a unique universality class.Comment: 14 pages (latex) + 1 figure (Postscript) ,uuencode

    The Master Field for the Half-Planar Approximation for Large NN Matrix Models and Boltzmann Field Theory

    Get PDF
    In this talk results of study in various dimensions of the Boltzmann master field for a subclass of planar diagrams, so called half-planar diagrams, found in the recent work by Accardi, Volovich and one of us (I.A.) are presented.Comment: Contr. Proc. Buckow Symposium (1995); 6 pages, LATEX uses twoside.sty, fleqn.sty, espcrc2.sty, emlines.sty, bezier.st

    Absence of a fuzzy S4S^4 phase in the dimensionally reduced 5d Yang-Mills-Chern-Simons model

    Full text link
    We perform nonperturbative studies of the dimensionally reduced 5d Yang-Mills-Chern-Simons model, in which a four-dimensional fuzzy manifold, ``fuzzy S4^{4}'', is known to exist as a classical solution. Although the action is unbounded from below, Monte Carlo simulations provide an evidence for a well-defined vacuum, which stabilizes at large NN, when the coefficient of the Chern-Simons term is sufficiently small. The fuzzy S4^{4} prepared as an initial configuration decays rapidly into this vacuum in the process of thermalization. Thus we find that the model does not possess a ``fuzzy S4^{4} phase'' in contrast to our previous results on the fuzzy S2^{2}.Comment: 11 pages, 2 figures, (v2) typos correcte

    On Eigenvalues of the sum of two random projections

    Full text link
    We study the behavior of eigenvalues of matrix P_N + Q_N where P_N and Q_N are two N -by-N random orthogonal projections. We relate the joint eigenvalue distribution of this matrix to the Jacobi matrix ensemble and establish the universal behavior of eigenvalues for large N. The limiting local behavior of eigenvalues is governed by the sine kernel in the bulk and by either the Bessel or the Airy kernel at the edge depending on parameters. We also study an exceptional case when the local behavior of eigenvalues of P_N + Q_N is not universal in the usual sense.Comment: 14 page

    A toy model for the AdS/CFT correspondence

    Full text link
    We study the large N gauged quantum mechanics for a single Hermitian matrix in the Harmonic oscillator potential well as a toy model for the AdS/CFT correspondence. We argue that the dual geometry should be a string in two dimensions with a curvature of stringy size. Even though the dual geometry is not weakly curved, one can still gain knowledge of the system from a detailed study of the open-closed string duality. We give a mapping between the basis of states made of traces (closed strings) and the eigenvalues of the matrix (D-brane picture) in terms of Schur polynomials. We connect this model with the study of giant gravitons in AdS_5 x S^5. We show that the two giant gravitons that expand along AdS_5 and S^5 can be interpreted in the matrix model as taking an eigenvalue from the Fermi sea and exciting it very much, or as making a hole in the Fermi sea respectively. This is similar to recent studies of the c=1 string. This connection gives new insight on how to perform calculations for giant gravitons.Comment: 19 pages JHEP, 4 figures. v2: comments added, typos fixed, additional refs. v3: The paper has been largely revised, to make the relation as a limit of N=4 SYM clear, also some proofs have been written in full rather than sketched. This updated version reflects the changes that were made in the published versio

    Hexatic-Herringbone Coupling at the Hexatic Transition in Smectic Liquid Crystals: 4-ϵ\epsilon Renormalization Group Calculations Revisited

    Full text link
    Simple symmetry considerations would suggest that the transition from the smectic-A phase to the long-range bond orientationally ordered hexatic smectic-B phase should belong to the XY universality class. However, a number of experimental studies have constantly reported over the past twenty years "novel" critical behavior with non-XY critical exponents for this transition. Bruinsma and Aeppli argued in Physical Review Letters {\bf 48}, 1625 (1982), using a 4ϵ4-\epsilon renormalization-group calculation, that short-range molecular herringbone correlations coupled to the hexatic ordering drive this transition first order via thermal fluctuations, and that the critical behavior observed in real systems is controlled by a `nearby' tricritical point. We have revisited the model of Bruinsma and Aeppli and present here the results of our study. We have found two nontrivial strongly-coupled herringbone-hexatic fixed points apparently missed by those authors. Yet, those two new nontrivial fixed-points are unstable, and we obtain the same final conclusion as the one reached by Bruinsma and Aeppli, namely that of a fluctuation-driven first order transition. We also discuss the effect of local two-fold distortion of the bond order as a possible missing order parameter in the Hamiltonian.Comment: 1 B/W eps figure included. Submitted to Physical Review E. Contact: [email protected]

    Two-Dimensional Unoriented Strings And Matrix Models

    Get PDF
    We investigate unoriented strings and superstrings in two dimensions and their dual matrix quantum mechanics. Most of the models we study have a tachyon tadpole coming from the RP^2 worldsheet which needs to be cancelled by a renormalization of the worldsheet theory. We find evidence that the dual matrix models describe the renormalized theory. The singlet sector of the matrix models is integrable and can be formulated in terms of fermions moving in an external potential and interacting via the Calogero-Moser potential. We show that in the double-scaling limit the latter system exhibits particle-hole duality and interpret it in terms of the dual string theory. We also show that oriented string theories in two dimensions can be continuously deformed into unoriented ones by turning on non-local interactions on the worldsheet. We find two unoriented superstring models for which only oriented worldsheets contribute to the S-matrix. A simple explanation for this is found in the dual matrix model.Comment: 36 pages, harvmac, 2 eps figure

    Two-dimensional superstrings and the supersymmetric matrix model

    Full text link
    We present evidence that the supersymmetric matrix model of Marinari and Parisi represents the world-line theory of N unstable D-particles in type II superstring theory in two dimensions. This identification suggests that the matrix model gives a holographic description of superstrings in a two-dimensional black hole geometry.Comment: 22 pages, 2 figures; v2: corrected eqn 4.6; v3: corrected appendices and discussion of vacua, added ref

    Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State

    Full text link
    We present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets which are close to the zero-temperature quantum transition between ground states with and without long-range N\'{e}el order. For N\'{e}el-ordered states, `nearly-critical' means that the ground state spin-stiffness, ρs\rho_s, satisfies ρsJ\rho_s \ll J, where JJ is the nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered ground states have a energy-gap, Δ\Delta, towards excitations with spin-1, which satisfies ΔJ\Delta \ll J. Under these circumstances, we show that the wavevector/frequency-dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal functions of just three thermodynamic parameters. Explicit results for the universal scaling functions are obtained by a 1/N1/N expansion on the O(N)O(N) quantum non-linear sigma model, and by Monte Carlo simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR, and magnetization measurements. Our results are in good agreement with a number of numerical simulations and experiments on undoped and lightly-doped La2δSrδCuO4La_{2-\delta} Sr_{\delta}Cu O_4.Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx

    Phase Transitions and Mass Generation in 2+1 Dimensions

    Get PDF
    The possibility that the epsilon expansion can predict the order of phase transitions in three dimensional field theories is examined. For a Hermitean matrix-valued order parameter, the epsilon expansion predicts fluctuation induced first order phase transitions. We analyze two 2+1-dimensional quantum field theories which exhibit spontaneous symmetry breaking and have martix order parameters. Using the large NN expansion, we show that these models exhibit second order transitions and discuss the implications for the chiral symmetry breaking transition in 2+1-dimensional QCD for a critical number of quark flavors.Comment: published in Phys. Rev. D50, 1060 (1994
    corecore