340 research outputs found

    An Aerial Gamma Ray Survey of Hunterston Nuclear Power Station in 14-15 April and 4 May 1994

    Get PDF

    An Aerial Gamma Ray Survey of Springfields and the Ribble Estuary in September 1992

    Get PDF
    <p>A short aerial gamma ray survey was conducted in the vicinity of the Springfields site and Ribble Estuary from 1st-5th September 1992, to define existing background radiation levels, against which any future changes can be assessed. A twin engine AS 355 "Squirrel" helicopter chartered from Dollar Helicopters was used for this work. It was loaded with a 16 litre NaI(Tl) gamma ray detector and spectroscopy system on the 31st August and during the following days over 2700 separate spectra were recorded within a survey area of 20 x 12 km. Gamma ray spectra were recorded every 5 seconds at survey speed and altitude of 120 kph and 75 m respectively. A flight line spacing of 0.3km was chosen for the main survey area. On the 3rd September a low altitude, high spatial resolution (flight line spacing 100m and altitude 30m) was made over Banks Marsh (an area frequented by local wild fowlers).</p> <p>Survey results have been stored archivally and used to map the naturally occurring radionuclides 40K, 214Bi and 208Tl together with 137Cs and total gamma ray flux. In addition, for the first time, estimates of 234mPa in terms of deconvoluted count rate (normalised to 100m altitude) were made in the presence of 228Ac interference probably in disequilibrium with its parent thorium series.</p> <p>The maps provide a clear indication of the distribution and sources of environmental radioactivity in the Ribble at the time of the survey. The Ribble estuary is subject to regular and ongoing ground based studies by BNF, MAFF, HMIP, and University based groups, as a result of the authorised discharges of low level radioactivity from the Springfields site. The results of this survey complement this ground based work, and add to confidence that the estuarine system, it's associated sediments, tide washed pastures, salt marshes and river banks, have been thoroughly examined. There is support for earlier conclusions that the Cs on the salt marshes is the dominant source of external gamma exposure, and that the Springfields contribution to these locations is minor in comparison with this, Sellafield derived, signal. Upstream the situation is more complex, particularly where the dynamic sources of beta radiation are considered. As far as critical group assessments are concerned the survey provides clear evidence that the areas affected by 137Cs, where external gamma dose and possible food chain effects are of greatest interest, are in the lower reaches of the Ribble, whereas, at the time of the survey the 234mPa distribution was in the upper reaches of the river. This not only confirms the findings of ground based work, but provides some assurance that the different exposure paths (external gamma dose, skin dose) are not entirely synergistic. The discovery of possible transient sources of natural 228Ac in the salt marsh environment as a consequence of Th series disequilibrium immediately following spring tides is extremely interesting. If substantiated by further studies using semiconductor detectors this provides a new insight into the dynamic radiation environment of tide washed contexts.</p> <p>Aerial survey can potentially provide a rapid and cost effective means of studying environmentally dynamic sources such as 234mPa. In the case of the Ribble it would be necessary to reduce survey height to below 50m ground clearance to improve spatial resolution. Possible inconvenience to residents and property owners of such low altitude flights would have to be considered in addition to the potential value of environmental knowledge of the behaviour of short lived nuclides in a dynamic system such the Ribble estuary. There is nonetheless considerable potential for time series studies of this location. Recent flight trials by SURRC incorporating high efficiency germanium semiconductor detectors have verified the feasibility and potential a hybrid scintillation⁄ semiconductor spectrometer. Such a device can resolve any ambiguities arising from overlapping gamma ray peaks. This is particularly relevant to the confirmation of 228Ac in salt marshes. Ground based sampling at the time of measurement would enable concentration calibrations to be made for these dynamic sources. Further ground based measurements would be desirable to establish the extent to which low energy photons contribute to external gamma ray dose rates from sources with pronounced subsurface activity maxima.</p&gt

    An Airborne Gamma Ray Survey of Parts of SW Scotland in February 1993. Final Report

    Get PDF
    An airborne gamma ray survey was conducted for the Scottish Office Environment Department of coastal and inland parts of SW Scotland to define existing background levels, to locate features worthy of further attention, and to demonstrate the emergency response capabilities of radiometric methods. Coastal areas were surveyed with 500 m line spacing. Inland areas were specified to 2 km line spacing, however it was possible to achieve 1 km line spacing in the majority of the inland zone. Fieldwork was conducted between the 1st and 16th February 1993. A total of over 17,000 gamma ray spectra were recorded, using a 16 litre NaI spectrometer mounted in a helicopter flying at 50-75m ground clearance and 120kph. A total area of 3650 km2 was surveyed in 41.6 flying hours, from roughly 4370 line kilometres. The data were reduced in the field using standard SURRC procedures for background subtraction, stripping of spectral interferences, altitude correction, and calibration. Preliminary maps of the distribution of 137Cs, 40K, 214Bi, 208Tl, and estimated ground level gamma dose rate were produced during the fieldwork period using working calibration values derived from previous surveys. A set of core samples was collected from Wigtown Merse, Longbridgemuir and Caerlaverock merse for calibration purposes, and aerial observations were performed at these sites. Further soil sampling and ground level in-situ gamma spectrometry was performed in the summer of 1993 to investigate the applicability of the calibration to a range of upland soil types and topographical environments. These locations received peak deposition from the Chernobyl accident, are vulnerable to wet deposition, and are difficult to monitor rapidly using ground based methods. A total of 76 soil cores, subdivided into 168 separate samples was thus collected for high resolution gamma spectrometry in the laboratory. This was conducted from April to November 1993. For the terrestrial sites the aerial survey estimates based on the working calibration, were in good agreement with both in-situ gamma spectrometry and the results of core analysis. This validates the preliminary maps in these contexts, and confirms that a general calibration is sufficient for fallout mapping under emergency response conditions. On coastal salt marsh sites (merse), where aged deposits of Sellafield derived activity have accumulated, subsurface activity profiles for 137Cs and 241Am and the presence of superficial levels of 134Cs were observed from the soil cores. Similar features have been observed in previous surveys. In these cases the effects of source burial must be taken into account to avoid underestimation of activity levels by both ground-based and aerial gamma spectrometry. A separate set of detailed maps for the principal merse sites was therefore prepared using a calibration factor derived from the soil cores from this context. There are prospects for developing spectral analysis procedures to account for source depth in aerial surveys. Source burial on the merse also has implications for sampling techniques, and for dose rate measurement, which would merit further consideration. The radiometric maps show clearly the distributions of each individual nuclide and indicate the contribution which individual localised features make to the overall gamma ray dose rate. Naturally occurring nuclides reflect the underlying geological and geomorphological contexts of the landscape. The main granite intrusions, most notably at Cairnsmore of Fleet, the Loch Doon Granodiorite, Glencairn of Carsphairn, the Dalbeattie granite, and Criffel Pluton are readily visible in 40K, 214Bi and 208Tl maps, and control their local radiation environments. A number of areas of enhanced 214Bi, which may reflect radon potential, were noted. A transient radon associated 214Bi signal was observed on the west of the Wigtown peninsular during the survey. Examination of spectral data in the vicinity of Dundrennan has confirmed that there is no evidence of widespread terrestrial contamination arising from the use of depleted uranium projectiles on the range. The 137Cs map indicates the environmental distribution of this nuclide in considerable detail. Levels of 137Cs range from approximately 2 kBq m-2, a level consistent with global weapons’ testing fallout, from 2-40kBq m-2 on terrestrial sites affected by deposition from the Chernobyl accident, and from 40 kBq m-2 to over 200 kBq m-2 on tide washed pastures which have accumulated marine sediments from the Irish Sea. All three levels are represented within the survey zone, in a manner which is consistent with the findings of previous aerial surveys in adjacent areas, and with ground based studies. The main Chernobyl deposition in Dumfries and Galloway appears to have occurred between an area just east of the Nith, and Glenluce. The northern limit has not yet been defined, and there may be grounds for considering extension of the northern and particularly eastern limits of the inland survey zone. Within the survey zone the deposition pattern is complex, including both upland and lowland components. The plume trajectories for deposition inferred from these observations are oriented northwards rather than in the NW directions predicted by meteorological derived estimates. This may explain the contradiction between results from the Central Highlands and the estimated fallout patterns. The data presented here both add to previous knowledge, and serve as a baseline against which any future changes can be measured. The survey provides systematic coverage of the sedimentary and terrestrial coastal system for the first time, and has identified a number of merse sites which have accumulated radioactivity from past marine discharges from Sellafield, and which are not routinely monitored under existing Scottish Office arrangements. Some of these locations are extensive and fall within SSI’s; furthermore they are key sites for studying future deposition trends. It would seem prudent to review radiological assessments in the light of this work to ensure that the patterns of occupancy and sensitive ecologies of the merse are taken fully into account. The emergency response potential of aerial radiometrics has been clearly demonstrated in this project. It provides the only practical means of providing comprehensive environmental measurements of remote and upland landscapes on a short time scale, with an effective area sampling density some 106-107 times greater than soil sampling. Results are compatible with ground based approaches, and could focus ground based efforts effectively under emergency conditions. Modern approaches to data recording and analysis are able to produce maps during the survey period. National baseline mapping in Scotland, at 1 km resolution, would require less than 800 flying hours; 20 km line spacing would take roughly 40 hours of flight time. A long term programme of high resolution national baseline mapping, coupled to an emergency response standby arrangement, would provide an extremely cost effective way of preserving the capability developed since the Chernobyl accident, while producing high quality environmental data for research purpos

    A trapped-ion local field probe

    Full text link
    We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characterizing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials. We find sub-percent agreement between measured and calculated electric field values

    Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Get PDF
    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores. © 2016 Author(s)

    Time resolved photoluminescence study of magnetic CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Get PDF
    Colloidal semiconductor nanoplatelets (NPLs) are quasi 2D-nanostructures that are grown and processed inexpensively using a solution based method and thus have recently attracted considerable attention. We observe two features in the photoluminescence spectrum, suggesting two possible recombination channels. Their intensity ratio varies with temperature and two distinct temperature regions are identified; a low temperature region (10K < T < 90K) and a high temperature region (90K < T < 200K). This ratio increases with increasing temperature, suggesting that one recombination channel involves holes that are weakly localized with a localization energy of 0.043meV. A possible origin of these localized states are energy-variations in the xy-plane of the nanoplatelet. The presence of positive photoluminescence circular polarization in the magnetically-doped core/multi-shell NPLs indicates a hole-dopant exchange interaction and therefore the incorporated magnetic Manganese ions act as a marker that determines the location of the localized hole states.1 Time-resolved measurements show two distinct timescales (τfast and τslow) that can be modeled using a rate equation model. We identify these timescales as closely related to the corresponding recombination times for the channels. The stronger hole localization of one of these channels leads to a decreased electron-hole wave function overlap and thus a decreased oscillator strength and an increased lifetime. We show that we can model and understand the magnetic interaction of doped 2D-colloidal nanoplatelets which opens a pathway to solution processable spin controllable light sources. Copyright © 2017 SPIE

    A novel approach to measure mitochondrial respiration in frozen biological samples.

    Get PDF
    Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks

    Magneto-optical studies of CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets

    Get PDF
    We studied the photoluminescence (PL)) from CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets, a versatile platform to study the interplay of optical properties and nanomagnetism. The photoluminescence (PL) exhibits σ+ polarization in the applied magnetic field. Our measurement detects the presence of even a single magnetic monolayer shell. The PLL consists of a higher and a lower energy component; the latter exhibits a circular polarization peak. The time-resolved PL (trPL) shows a red shift as function of time delay. At early (later) times the trPL spectra coincide with the high (low) energy PL component. A model is proposed to interpret these results. © 2016 SPIE

    Second and Third Season QUaD Cosmic Microwave Background Temperature and Polarization Power Spectra

    Get PDF
    We report results from the second and third seasons of observation with the QUaD experiment. Angular power spectra of the cosmic microwave background are derived for both temperature and polarization at both 100 GHz and 150 GHz, and as cross-frequency spectra. All spectra are subjected to an extensive set of jackknife tests to probe for possible systematic contamination. For the implemented data cuts and processing technique such contamination is undetectable. We analyze the difference map formed between the 100 and 150 GHz bands and find no evidence of foreground contamination in polarization. The spectra are then combined to form a single set of results which are shown to be consistent with the prevailing LCDM model. The sensitivity of the polarization results is considerably better than that of any previous experiment— for the first time multiple acoustic peaks are detected in the E-mode power spectrum at high significance
    corecore