37 research outputs found

    The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff

    Get PDF
    The concept of pulled fronts with a cutoff ϵ\epsilon has been introduced to model the effects of discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (Pulled fronts are the fronts which propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed vv^* of small linear perturbations around the unstable state). In this paper, we demonstrate that the introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation with a cutoff, we show that the longest relaxation times τm\tau_m that govern the convergence to the asymptotic front speed and profile, are given by τm1[(m+1)21]π2/ln2ϵ\tau_m^{-1} \simeq [(m+1)^2-1] \pi^2 / \ln^2 \epsilon, for m=1,2,...m=1,2,....Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.

    The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3

    Full text link
    We consider an Euclidean supersymmetric field theory in Z3Z^3 given by a supersymmetric Φ4\Phi^4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green's function of a (stable) L\'evy random walk in Z3Z^3. The Green's function depends on the L\'evy-Khintchine parameter α=3+ϵ2\alpha={3+\epsilon\over 2} with 0<α<20<\alpha<2. For α=32\alpha ={3\over 2} the Φ4\Phi^{4} interaction is marginal. We prove for α32=ϵ2>0\alpha-{3\over 2}={\epsilon\over 2}>0 sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green's function of a (weakly) self-avoiding L\'evy walk in Z3Z^3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The control of the renormalization group trajectory is a preparation for the study of the asymptotics of this Green's function. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding L\'evy walk in Z3Z^3.Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition of norms involving fermions to ensure uniqueness. 2. change in the definition of lattice blocks and lattice polymer activities. 3. Some proofs have been reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos corrected.This is the version to appear in Journal of Statistical Physic

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Gravitational Radiation From Cosmological Turbulence

    Get PDF
    An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.Comment: 20 pages. Corrections for an errant factor of 2 in all the gravity wave characteristic amplitudes. Accepted for publication in Phys. Rev.

    Inhalte und Maße

    No full text
    corecore