875 research outputs found

    Shot noise of coupled semiconductor quantum dots

    Full text link
    The low-frequency shot noise properties of two electrostatically coupled semiconductor quantum dot states which are connected to emitter/collector contacts are studied. A master equation approach is used to analyze the bias voltage dependence of the Fano factor as a measure of temporal correlations in tunneling current caused by Pauli's exclusion principle and the Coulomb interaction. In particular, the influence of the Coulomb interaction on the shot noise behavior is discussed in detail and predictions for future experiments will be given. Furthermore, we propose a mechanism for negative differential conductance and investigate the related super-Poissonian shot noise.Comment: submitted to PR

    Scalar Synchrotron Radiation in the Schwarzschild-anti-de Sitter Geometry

    Get PDF
    We present a complete relativistic analysis for the scalar radiation emitted by a particle in circular orbit around a Schwarzschild-anti-de Sitter black hole. If the black hole is large, then the radiation is concentrated in narrow angles- high multipolar distribution- i.e., the radiation is synchrotronic. However, small black holes exhibit a totally different behavior: in the small black hole regime, the radiation is concentrated in low multipoles. There is a transition mass at M=0.427RM=0.427 R, where RR is the AdS radius. This behavior is new, it is not present in asymptotically flat spacetimes.Comment: 13 pages, 6 figures, published version. References adde

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199

    Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps

    Get PDF
    We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering amplitude for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single channel s-wave scattering of 23^{23}Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime. Our model works also for multi-channel scattering, where the scattering length can be made large due to a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review

    Large Scale Structure Formation with Global Topological Defects. A new Formalism and its implementation by numerical simulations

    Get PDF
    We investigate cosmological structure formation seeded by topological defects which may form during a phase transition in the early universe. First we derive a partially new, local and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects or any other type of seeds. We then show that this system is well suited for numerical analysis of structure formation by applying it to seeds induced by fluctuations of a global scalar field. Our numerical results are complementary to previous investigations since we use substantially different methods. The resulting microwave background fluctuations are compatible with older simulations. We also obtain a scale invariant spectrum of fluctuations with about the same amplitude. However, our dark matter results yield a smaller bias parameter compatible with b2b\sim 2 on a scale of 20Mpc20 Mpc in contrast to previous work which yielded to large bias factors. Our conclusions are thus more positive. According to the aspects analyzed in this work, global topological defect induced fluctuations yield viable scenarios of structure formation and do better than standard CDM on large scales.Comment: uuencoded, compressed tar-file containing the text in LaTeX and 12 Postscript Figures, 41 page

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    TRIUMF experiment 497 has measured the parity violating longitudinal analyzing power, A_z, in pp elastic scattering at 221.3 MeV incident proton energy. This paper includes details of the corrections, some of magnitude comparable to A_z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A_z=(0.84 \pm 0.29 (stat.) \pm 0.17 (syst.)) \times 10^{-7}, to the pp parity violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h^{pp}_\rho and h^{pp}_\omega, and has implications for the interpretation of electron parity violation experiments.Comment: 17 pages RevTeX, 14 PostScript figures. Revised version with additions suggested by Phys. Rev.

    Heat release by controlled continuous-time Markov jump processes

    Full text link
    We derive the equations governing the protocols minimizing the heat released by a continuous-time Markov jump process on a one-dimensional countable state space during a transition between assigned initial and final probability distributions in a finite time horizon. In particular, we identify the hypotheses on the transition rates under which the optimal control strategy and the probability distribution of the Markov jump problem obey a system of differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh tends to zero, these equations converge to those satisfied by the diffusion process minimizing the heat released in the Langevin formulation of the same problem. We also show that in full analogy with the continuum case, heat minimization is equivalent to entropy production minimization. Thus, our results may be interpreted as a refined version of the second law of thermodynamics.Comment: final version, section 2.1 revised, 26 pages, 3 figure

    Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases

    Full text link
    We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas composed of two antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio
    corecore