7 research outputs found
Cosmological effects of scalar-photon couplings: dark energy and varying-α models
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temper- ature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation
Constraints on the CMB temperature redshift dependence from SZ and distance measurements
The relation between redshift and the CMB temperature,
is a key prediction of standard cosmology, but is violated in many non-standard
models. Constraining possible deviations to this law is an effective way to
test the CDM paradigm and search for hints of new physics. We present
state-of-the-art constraints, using both direct and indirect measurements. In
particular, we point out that in models where photons can be created or
destroyed, not only does the temperature-redshift relation change, but so does
the distance duality relation, and these departures from the standard behaviour
are related, providing us with an opportunity to improve constraints. We show
that current datasets limit possible deviations of the form
to be up to a redshift
. We also discuss how, with the next generation of space and
ground-based experiments, these constraints can be improved by more than one
order of magnitude.Comment: 27 pages, 11 figure
Cosmological effects of scalar-photon couplings: dark energy and varying-α models
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temper- ature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation
A test of unification towards the radio source PKS1413+135
AbstractWe point out that existing astrophysical measurements of combinations of the fine-structure constant α, the proton-to-electron mass ratio μ and the proton gyromagnetic ratio gp towards the radio source PKS1413+135 can be used to individually constrain each of these fundamental couplings. While the accuracy of the available measurements is not yet sufficient to test the spatial dipole scenario, our analysis serves as a proof of concept as new observational facilities will soon allow significantly more robust tests. Moreover, these measurements can also be used to obtain constraints on certain classes of unification scenarios, and we compare the constraints obtained for PKS1413+135 with those previously obtained from local atomic clock measurements
Surface and Interface Superconductivity
This article focuses on surface and interface superconductivity, a pivotal area of mesoscopic superconductivity. It discusses theoretical ideas regarding superconductivity in the 2D limit; pairing symmetry in systems with broken inversion symmetry and in the presence of Rashba spin–orbit interaction; and coupling of substrate phonon modes to layer electronic states to induce or enhance the superconducting condensate. It also reviews the experimental ongoing efforts to fabricate, characterize, and measure these systems, with particular emphasis on oxide materials. Superconductivity in two dimensions, in ultra-thin metals on Si(111), and at the LaAlO3/SrTiO3 interface is examined. The article concludes with an analysis of theoretical propositions aimed at realizing and testing novel superconducting states occurring at the surfaces and interfaces.</p
Probing unification scenarios with atomic clocks
We discuss the usage of measurements of the stability of nature’s fundamental constants coming from comparisons between atomic clocks as a means to constrain coupled variations of these constants in a broad class of unification scenarios. After introducing the phenomenology of these models, we provide updated constraints based on a global analysis of the latest experimental results. We obtain null results for the proton-to-electron mass ratio ??/?=(0.68±5.79)×10-16??yr-1 and for the gyromagnetic factor g?p/gp=(-0.72±0.89)×10-16??yr-1 (both of these being at the 95% confidence level). These results are compatible with theoretical expectations on unification scenarios, but much freedom exists due to the presence of a degeneracy direction in the relevant parameter space.Applied Science
Ultrathin complex oxide nanomechanical resonators
Complex oxide thin films and heterostructures exhibit a variety of electronic phases, often controlled by the mechanical coupling between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the study of their properties in the absence of interface effects. In this work, we use this technique to create nanomechanical resonators made out of SrTiO 3 and SrRuO 3 . Using laser interferometry, we successfully actuate and measure the motion of the nanodrum resonators. By measuring the temperature-dependent mechanical response of the SrTiO 3 resonators, we observe signatures of a structural phase transition, which affects both the strain and mechanical dissipation in the resonators. Here, we demonstrate the feasibility of integrating ultrathin complex oxide membranes for realizing nanoelectromechanical systems on arbitrary substrates and present a novel method of detecting structural phase transitions in these exotic materials. </p
