12 research outputs found

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Sentence comprehension and word repetition: A positron emission tomography investigation

    No full text
    Using positron emission tomography, visual presentation of sentences was shown to cause increased regional cerebral blood flow relative to word Lists in the left lateral anterior superior and middle temporal gyri, attributable to cognitive processes that occur during sentence comprehension in addition to those carried out during word comprehension. Additional comparisons showed that repeating words (in a different context, when subjects did not attempt to learn the initial lists) led to significant patterns of both increased blood flow (left putamen and right caudate) and decreased blood flow (left posterior temporal lobe). Increases are argued to reflect retrieval of memory traces, whereas decreases reflect diminished necessity for processing of input. A decrease in the left inferior parietal lobe was attributable to other factors

    A new method for short-duration transient detection in radio images:searching for transient sources in MeerKAT data of NGC 5068

    Get PDF
    Transient surveys are a vital tool in e xploring the dynamic Universe, with radio transients acting as beacons for explosive and highly energetic astrophysical phenomena. However, performing commensal transient surveys using radio imaging can require a significant amount of computing power, data storage, and time. With the instrumentation available to us, and with new and exciting radio interferometers in development, it is essential that we develop efficient methods to probe the radio transient sky. In this paper, we present results from a commensal short-duration transient survey, on time-scales of 8 s, 128 s, and 1 h, using data from the MeerKAT radio telescope. The data set used was obtained as part of a galaxy observing campaign, and we focus on the field of NGC 5068. We present a quick, wide-field imaging strategy to enable fast imaging of large data sets, and develop methods to efficiently filter detected transient candidates. No transient candidates were identified on the time-scales of 8 s, 128 s, and 1 h, leading to competitive limits on the transient surface densities of 6.7 × 10−5, 1.1 × 10−3, and 3.2 ×10−2 deg−1 at sensitivities of 56.4, 19.2, and 3.9 mJy following primary beam correction for the respective time-scales. We find one possible candidate that could be associated with a stellar flare, which was rejected due to strict image quality control. Further short time-scale radio observations of this candidate could give definite results about its origin.</p
    corecore