903 research outputs found

    EADMS: A systemic approach to map emotions with Bloom's Affective Domain

    Get PDF
    The quality of education depreciates as in-person classes were quickly replaced with virtual classes amidst the global pandemic. With the rise of the virtual classroom environment, educators lose the opportunity to interact with students and tailor the teaching style that best suits them. Educators use students' facial expressions and emotional responses to the content to predict the understanding levels subjectively. This paper proposes the Emotion-Affective Domain Mapping System (EADMS) as an alternative tool. The EADMS captures students' facial data during online classes in the form of a video and uses AI to determine emotions like contempt, anger, fear, happiness, disgust, surprise, and neutral state of emotion. The system breaks the video recording into three parts: the start of the class, between class, and the end of class to retrieve facial data and translate it to emotional data. The emotional data is mapped with the 'Affective Domain' of Bloom's Taxonomy to generate a graphical chart that plots the understanding level over the three periods. The EADMS successfully extracted information from videos on the internet and was reasonably reliable when tested with one of the authors

    Polarimetric Observations of 15 AGNs at High Frequencies

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe have obtained total and polarized intensity images of 15 AGNs with the VLBA at 7 mm at 17 epochs from 25/26 March 1998 to 14 April 2001. The VLBA observations are accompanied at many epochs by simultaneous mea- surements of polarization at 1.35/0.85 mm as well as less frequent simultaneous optical polarization measurements. We discuss the similarities and complexities of polarization behavior at different frequencies along with the VLBI properties

    R-matrix theory of driven electromagnetic cavities

    Full text link
    Resonances of cylindrical symmetric microwave cavities are analyzed in R-matrix theory which transforms the input channel conditions to the output channels. Single and interfering double resonances are studied and compared with experimental results, obtained with superconducting microwave cavities. Because of the equivalence of the two-dimensional Helmholtz and the stationary Schroedinger equations, the results present insight into the resonance structure of regular and chaotic quantum billiards.Comment: Revtex 4.

    The sound of violets: the ethnographic potency of poetry?

    Get PDF
    This paper takes the form of a dialogue between the two authors, and is in two halves, the first half discursive and propositional, and the second half exemplifying the rhetorical, epistemological and metaphysical affordances of poetry in critically scrutinising the rhetoric, epistemology and metaphysics of educational management discourse. Phipps and Saunders explore, through ideas and poems, how poetry can interrupt and/or illuminate dominant values in education and in educational research methods, such as: ‱ alternatives to the military metaphors – targets, strategies and the like – that dominate the soundscape of education; ‱ the kinds and qualities of the cognitive and feeling spaces that might be opened up by the shifting of methodological boundaries; ‱ the considerable work done in ethnography on the use of the poetic: anthropologists have long used poetry as a medium for expressing their sense of empathic connection to their field and their subjects, particularly in considering the creativity and meaning-making that characterise all human societies in different ways; ‱ the particular rhetorical affordances of poetry, as a discipline, as a practice, as an art, as patterned breath; its capacity to shift phonemic, and therewith methodological, authority; its offering of redress to linear and reductive attempts at scripting social life, as always already given and without alternative

    Collective effects of stellar winds and unidentified gamma-ray sources

    Get PDF
    We study collective wind configurations produced by a number of massive stars, and obtain densities and expansion velocities of the stellar wind gas that is to be target, in this model, of hadronic interactions. We study the expected Îł\gamma-ray emission from these regions, considering in an approximate way the effect of cosmic ray modulation. We compute secondary particle production (electrons from knock-on interactions and electrons and positrons from charged pion decay), and solve the loss equation with ionization, synchrotron, bremsstrahlung, inverse Compton, and expansion losses. We provide examples where configurations can produce sources for GLAST satellite, and the MAGIC, HESS, or VERITAS telescopes in non-uniform ways, i.e., with or without the corresponding counterparts. We show that in all cases we studied no EGRET source is expected

    Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest

    Get PDF
    Biogenic volatile organic compounds (BVOCs) can react in the atmosphere to form organic nitrates, which serve as NOx(NO+NO2)\text{NO}_{x} (\text{NO} + \text{NO}_{2}) reservoirs, impacting ozone and secondary organic aerosol production, the oxidative capacity of the atmosphere, and nitrogen availability to ecosystems. To examine the contributions of biogenic emissions and the formation and fate of organic nitrates in a forest environment, we simulated the oxidation of 57 individual BVOCs emitted from a rural mixed forest in northern Michigan. Key BVOC-oxidant reactions were identified for future laboratory and field investigations into reaction rate constants, yields, and speciation of oxidation products. Of the total simulated organic nitrates, monoterpenes contributed ~70% in the early morning at ~12 m above the forest canopy when isoprene emissions were low. In the afternoon, when vertical mixing and isoprene nitrate production were highest, the simulated contribution of isoprene-derived organic nitrates was greater than 90% at all altitudes, with the concentration of secondary isoprene nitrates increasing with altitude. Notably, reaction of isoprene with NO3\text{NO}_{3} leading to isoprene nitrate formation was found to be significant (~8% of primary organic nitrate production) during the daytime, and monoterpene reactions with NO3\text{NO}_{3} were simulated to comprise up to ~83% of primary organic nitrate production at night. Lastly, forest succession, wherein aspen trees are being replaced by pine and maple trees, was predicted to lead to increased afternoon concentrations of monoterpene-derived organic nitrates. This further underscores the need to understand the formation and fate of these species, which have different chemical pathways and oxidation products compared to isoprene-derived organic nitrates and can lead to secondary organic aerosol formation

    In-canopy gas-phase chemistry during CABINEX 2009: Sensitivity of a 1-D canopy model to vertical mixing and isoprene chemistry

    Get PDF
    Vegetation emits large quantities of biogenic volatile organic compounds (BVOC). At remote sites, these compounds are the dominant precursors to ozone and secondary organic aerosol (SOA) production, yet current field studies show that atmospheric models have difficulty in capturing the observed HOx cycle and concentrations of BVOC oxidation products. In this manuscript, we simulate BVOC chemistry within a forest canopy using a one-dimensional canopy-chemistry model (Canopy Atmospheric CHemistry Emission model; CACHE) for a mixed deciduous forest in northern Michigan during the CABINEX 2009 campaign. We find that the base-case model, using fully-parameterized mixing and the simplified biogenic chemistry of the Regional Atmospheric Chemistry Model (RACM), underestimates daytime in-canopy vertical mixing by 50–70% and by an order of magnitude at night, leading to discrepancies in the diurnal evolution of HOx, BVOC, and BVOC oxidation products. Implementing observed micrometeorological data from above and within the canopy substantially improves the diurnal cycle of modeled BVOC, particularly at the end of the day, and also improves the observation-model agreement for some BVOC oxidation products and OH reactivity. We compare the RACM mechanism to a version that includes the Mainz isoprene mechanism (RACM-MIM) to test the model sensitivity to enhanced isoprene degradation. RACM-MIM simulates higher concentrations of both primary BVOC (isoprene and monoterpenes) and oxidation products (HCHO, MACR+MVK) compared with RACM simulations. Additionally, the revised mechanism alters the OH concentrations and increases HO2. These changes generally improve agreement with HOx observations yet overestimate BVOC oxidation products, indicating that this isoprene mechanism does not improve the representation of local chemistry at the site. Overall, the revised mechanism yields smaller changes in BVOC and BVOC oxidation product concentrations and gradients than improving the parameterization of vertical mixing with observations, suggesting that uncertainties in vertical mixing parameterizations are an important component in understanding observed BVOC chemistry
    • 

    corecore