57 research outputs found

    Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment

    Get PDF
    Cancer is one of the leading causes of death worldwide and early detection provides the best possible prognosis for cancer patients. Nanotechnology is the branch of engineering that deals with the manipulation of individual atoms and molecules. This area of science has the potential to help identify cancerous cells and to destroy them by various methods such as drug delivery or thermal treatment of cancer. Carbon nanotubes (CNT) and quantum dots (QDs) are the two nanoparticles, which have received considerable interest in view of their application for diagnosis and treatment of cancer. Fluorescent nanoparticles known as QDs are gaining momentum as imaging molecules with life science and clinical applications. Clinically they can be used for localization of cancer cells due to their nano size and ability to penetrate individual cancer cells and high-resolution imaging derived from their narrow emission bands compared with organic dyes. CNTs are of interest to the medical community due to their unique properties such as the ability to deliver drugs to a site of action or convert optical energy into thermal energy. By attaching antibodies that bind specifically to tumor cells, CNTs can navigate to malignant tumors. Once at the tumor site, the CNTs enter into the cancer cells by penetration or endocytosis, allowing drug release, and resulting in specific cancer cell death. Alternatively, CNTs can be exposed to near-infrared light in order to thermally destroy the cancer cells. The amphiphilic nature of CNTs allows them to penetrate the cell membrane and their large surface area (in the order of 2600 m2/g) allows drugs to be loaded into the tube and released once inside the cancer cell. Many research laboratories, including our own, are investigating the conjugation of QDs to CNTs to allow localization of the cancer cells in the patient, by imaging with QDs, and subsequent cell killing, via drug release or thermal treatment. This is an area of huge interest and future research and therapy will focus on the multimodality of nanoparticles. In this review, we seek to explore the biomedical applications of QDs conjugated to CNTs, with a particular emphasis on their use as therapeutic platforms in oncology

    Graphene oxide: opportunities and challenges in biomedicine

    Get PDF
    Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. The presence of functional groups on graphene oxide (GO) enhances further interactions with other molecules. Therefore, recent studies have focused on GO-based materials (GOBMs) rather than graphene. The aim of this research was to highlight the physicochemical and biological properties of GOBMs, especially their significance to biomedical applications. The latest studies of GOBMs in biomedical applications are critically reviewed, and in vitro and preclinical studies are assessed. Furthermore, the challenges likely to be faced and prospective future potential are addressed. GOBMs, a high potential emerging material, will dominate the materials of choice in the repair and development of human organs and medical devices. There is already great interest among academics as well as in pharmaceutical and biomedical industries

    Graphene-based materials prove to be a promising candidate for nerve regeneration following peripheral nerve injury

    Get PDF
    Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE-approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps > 30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting

    The risk of pancreatic adenocarcinoma following SARS-CoV family infection

    Get PDF
    COVID 19 disease has become a global catastrophe over the past year that has claimed the lives of over two million people around the world. Despite the introduction of vaccines against the disease, there is still a long way to completely eradicate it. There are concerns about the complications following infection with SARS-CoV-2. This research aimed to evaluate the possible correlation between infection with SARS-CoV viruses and cancer in an in-silico study model. To do this, the relevent dataset was selected from GEO database. Identification of differentially expressed genes among defined groups including SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 were screened where the |Log FC| � 1and p < 0.05 were considered statistically significant. Later, the pathway enrichment analysis and gene ontology (GO) were used by Enrichr and Shiny GO databases. Evaluation with STRING online was applied to predict the functional interactions of proteins, followed by Cytoscape analysis to identify the master genes. Finally, analysis with GEPIA2 server was carried out to reveal the possible correlation between candidate genes and cancer development. The results showed that the main molecular function of up- and down-regulated genes was �double-stranded RNA binding� and actin-binding, respectively. STRING and Cytoscape analysis presented four genes, PTEN, CREB1, CASP3, and SMAD3 as the key genes involved in cancer development. According to TCGA database results, these four genes were up-regulated notably in pancreatic adenocarcinoma. Our findings suggest that pancreatic adenocarcinoma is the most probably malignancy happening after infection with SARS-CoV family. © 2021, The Author(s)

    λ phage nanobioparticle expressing apoptin efficiently suppress human breast carcinoma tumor growth in vivo

    Get PDF
    Using phages is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. Apoptin, a protein from chicken anemia virus (CAV) has the ability to specifically induce apoptosis only in carcinoma cells. We presented a safe method of breast tumor therapy via the apoptin expressing λ NBPs. Here, we constructed a λ ZAP-CMV-apoptin recombinant NBP and investigated the effectiveness of its apoptotic activity on BT-474, MDA-MB-361, SKBR-3, UACC-812 and ZR-75 cell lines that over-expressing her-2 marker. Apoptosis was evaluated via annexin-V fluorescent iso-thiocyanate/propidium iodide staining, flow-cytometric method and TUNEL assay. Transfection with NBPs carrying λ ZAP-CMV-apoptin significantly inhibited growth of all the breast carcinoma cell lines in vitro. Also nude mice model implanted BT-474 human breast tumor was successfully responded to the systemic and local injection of untargeted recombinant λ NBPs. The results presented here reveal important features of recombinant λ nanobioparticles to serve as safe delivery and expression platform for human cancer therapy. © 2013 Shoae-Hassani et al

    Development of a cost-effective and simple protocol for decellularization and preservation of human amniotic membrane as a soft tissue replacement and delivery system for bone marrow stromal cells

    No full text
    The aim of this study is to develop a simple andcost-effective method for decellularization and preservation of human amniotic membrane (HAM) as a soft tissue replacement and a delivery system for stem cells. The HAM is decellularized (D) using new chemical and mechanical techniques. The decellularization scaffold is evaluated histologically and fully characterized. The cell adhesion and proliferation on the scaffold are also investigated and the biocompatibility of D tissues is evaluated in vivo. The histological studies reveal that the cells are successfully removed from the D tissue. The DNA extraction shows more than 95 cell removal (p = 0.001). The in vitro results indicate that the decellularisation process does not deteriorate the mechanical properties of the tissue, whereas it increases the in vitro biodegradation value (p 0.05). Immunohistochemistry staining indicates that all the tested components remain unchanged within the D tissues. The count of inflammatory cells show that the decellularization process slightly increases the biocompatibility of the tissue after 7 days post-surgery. The results indicate that scaffold proves to be reproducible, rapid, and cost-effective, with a potential role for clinical application. Human amniotic membrane (HAM) is successfully decellularized by non-enzymatic agents as a cost-effective and simple protocol. The samples are stained with immunohistochemistry (IHC), hematoxylin and eosin, and DAPI (4�,6-diamidino-2-phenylindole) to evaluate histologically the removal of cells from tissue. The results show the fully removal of cells from the tissue, while the extracellular matrix of the HAM remains unchanged. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors

    No full text
    In this study, the effects of various parameters of the water-in-oil emulsification/internal gelation method on the properties of calcium-alginate microparticles were evaluated and optimized. Results showed that the spherical-shaped microparticles with the highest circularity and high production yield can be produced by alginate solution with a concentration of 2 wt., calcium carbonate/alginate ratio of 10/1 (w/w), water/oil volume ratio of 1/20, emulsifier concentration of 5 (v/v), and emulsification speed of 1000 rpm. Two model drugs including simvastatin lactone and simvastatin β-hydroxyacid were loaded into the microspheres with promising encapsulation efficiencies of 73 and 69 , respectively. The microspheres showed a pH-responsive swelling behavior with a percentage of 10.60 , 352.65 , 690.03 , and 1211.46 at the pH values of 2.0, 4.5, 7.4, and 8.5, respectively. The microspheres showed an increasing trend of release rate in direct proportion to pH. These findings would be useful for therapeutic applications which need pH-responsive drug carriers. © 2020 Elsevier Lt
    corecore