10 research outputs found

    Surface state atoms and their contribution to the surface tension of quantum liquids

    Full text link
    We investigate the new type of excitations on the surface of liquid helium. These excitations, called surfons, appear because helium atoms have discrete energy level at the liquid surface, being attracted to the surface by the van der Waals force and repulsed at a hard-core interatomic distance. The concentration of the surfons increases with temperature. The surfons propagate along the surface and form a two-dimensional gas. Basing on the simple model of the surfon microscopic structure, we estimate the surfon activation energy and effective mass for both helium isotopes. We also calculate the contribution of the surfons to the temperature dependence of the surface tension. This contribution explains the great and long-standing discrepancy between theory and experiment on this temperature dependence in both helium isotopes. The achieved agreement between our theory and experiment is extremely high. The comparison with experiment allows to extract the surfon activation energy and effective mass. The values of these surfon microscopic parameters are in a reasonable agreement with the calculated from the proposed simple model of surfon structure.Comment: 10 pages, 6 figure

    Critical temperature of the superfluid transition in bose liquids

    Full text link
    A phenomenological criterion for the superfluid transition is proposed, which is similar to the Lindemann criterion for the crystal melting. Then we derive a new formula for the critical temperature, relating TλT_{\lambda} to the mean kinetic energy per particle above the transition. The suppression of the critical temperature in a sufficiently dense liquid is described as a result of the quantum decoherence phenomenon. The theory can account for the observed dependence of TλT_{\lambda} on density in liquid helium and results in an estimate Tλ1.1T_{\lambda} \sim 1.1 K for molecular hydrogen.Comment: 4 pages, 1 fi

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave KK^- condensate state may occur at densities ρc3÷5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl

    Neutrino Cooling of Neutron Stars. Medium effects

    Get PDF
    This review demonstrates that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings so called "standard" and "non-standard" cooling scenarios are replaced by one general "nuclear medium cooling scenario" which relates slow and rapid neutron star coolings to the star masses (interior densities). In-medium effects take important part also at early hot stage of neutron star evolution decreasing the neutrino opacity for less massive and increasing for more massive neutron stars. A formalism for calculation of neutrino radiation from nuclear matter is presented that treats on equal footing one-nucleon and multiple-nucleon processes as well as reactions with resonance bosons and condensates. Cooling history of neutron stars with quark cores is also discussed.Comment: To be published in "Physics of Neutron Star Interiors", Eds. D. Blaschke, N.K. Glendenning, A. Sedrakian, Springer, Heidelberg (2001

    Theory of quantum nondegenerated liquids

    No full text
    We propose a theory of nondegenerated quantum liquids which is insensitive to the kind of particle statistics and which is applied to condensed helium. We take explicitly into account the fact that the atomic mass and the polarizability are small. We take as the zeroth approximation a system of hard spheres while the attractive forces and the softness of the atom are taken into account as small effects. We show that for temperatures T which are larger than the degeneracy temperature, but less than the temperature at which the atoms are destroyed (ionized), the only characteristic energy scale of the liquid is the energy K0 of its zero point oscillations - the value of the mean kinetic energy of an atom at T = 0. As a result of this fact the "quantum scaling" occurs, i.e., scale invariance of the thermodynamic and kinetic characteristics of the liquid under those changes in T and the density n which leave the reduced temperature T* = T/K unchanged. Through a transformation of the scales of T and n one can determine the thermodynamic functions of any quantum liquid, using the known experimental data of He4. We obtain relations between the thermodynamic characteristics of liquid He 3 and He4
    corecore