14 research outputs found

    Long Term Cyclic Pamidronate Reduces Bone Growth by Inhibiting Osteoclast Mediated Cartilage-to-Bone Turnover in the Mouse

    Get PDF
    Bisphosphonates, used to treat diseases exhibiting increased osteoclast activity, reduce longitudinal bone growth through an as yet undefined mechanism. Pamidronate, an aminobisphosphonate, was given weekly to mice at 0, 1.25, or 2.50 mg/kg/wk beginning at 4 weeks of age. At 12 weeks of age, humeral length, growth plate area, regional chondrocyte cell numbers, chondrocyte apoptosis, TRAP stained osteoclast number, and osteoclast function assessed by cathepsin K immunohistochemistry were quantified. Humeral length was decreased in pamidronate treated mice compared to vehicle control mice, and correlated with greater growth plate areas reflecting greater proliferative and hypertrophic chondrocyte cell numbers with fewer hypertrophic cells undergoing apoptosis. Pamidronate treatment increased TRAP stained osteoclast numbers yet decreased cathepsin K indicating that pamidronate repressed osteoclast maturation and function. The data suggest that long term cyclic pamidronate treatment impairs bone growth by inhibition of osteoclast maturation thereby reducing cartilage-to-bone turnover within the growth plate

    Alendronate Inhibits VEGF Expression in Growth Plate Chondrocytes by Acting on the Mevalonate Pathway

    Get PDF
    Bisphosphonates decrease chondrocyte turnover at the growth plate and impact bone growth. Likewise vascular endothelial growth factor (VEGF) plays an important role in endochondral bone elongation by influencing chondrocyte turnover at the growth plate. To investigate whether the action of bisphosphonate on the growth plate works through VEGF, VEGF protein expression and isoform transcription in endochondral chondrocytes isolated from growing mice and treated with a clinically used bisphosphonate, alendronate, were assessed. Alendronate at 10µM and 100µM concentrations decreased secreted VEGF protein expression but not cell associated protein. Bisphosphonates are known to inhibit the mevalonate intracellular signaling pathway used by VEGF. Addition of the mevalonate pathway intermediates farnesol (FOH) and geranylgeraniol (GGOH) interacted with the low concentration of alendronate to further decrease secreted VEGF protein whereas FOH partially restored VEGF protein secretion when combined with the high alendronate. Similar to the protein data, the addition of alendronate decreased VEGF mRNA isoforms. VEGF mRNA levels were rescued by the GGOH mevalonate pathway intermediate at the low alendronate dose whereas neither intermediate consistently restored the VEGF mRNA levels at the high alendronate dose. Thus, the bisphophonate alendronate impairs growth plate chondrocyte turnover by down-regulating the secreted forms of VEGF mRNA and protein by inhibiting the mevalonate pathway

    Warming shortens flowering seasons of tundra plant communities

    Get PDF
    Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes

    Arctic plants are capable of sustained responses to long-term warming

    No full text
    Previous studies have shown that Arctic plants typically respond to warming with increased growth and reproductive effort and accelerated phenology, and that the magnitude of these responses is likely to change over time. We investigated the effects of long-term experimental warming on plant growth (leaf length) and reproduction (inflorescence height, reproductive phenology and reproductive effort) using 17–19 years of measurements collected as part of the International Tundra Experiment (ITEX) at sites near Barrow and Atqasuk, Alaska. During the study period, linear regressions indicated non-significant tendencies towards warming air temperatures at our study sites. Results of our meta-analyses on the effect size of experimental warming (calculated as Hedges’ d) indicated species generally responded to warming by increasing inflorescence height, increasing leaf length and flowering earlier, while reproductive effort did not respond consistently. Using weighted least-squares regressions on effect sizes, we found a significant trend towards dampened response to experimental warming over time for reproductive phenology. This tendency was consistent, though non-significant, across all traits. A separate analysis revealed significant trends towards reduced responses to experimental warming during warmer summers for all traits. We therefore propose that tendencies towards dampened plant responses to experimental warming over time are the result of regional warming. These results show that Arctic plants are capable of sustained responses to warming over long periods of time but also suggest that, as the region continues to warm, factors such as nutrient availability, competition and herbivory will become more limiting to plant growth and reproduction than temperature
    corecore