26 research outputs found

    Hydrogen and Carbon Monoxide-Utilizing Kyrpidia spormannii Species From Pantelleria Island, Italy

    Get PDF
    Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55\ub0C and pH 5.0. The highest growth rate is obtained using H2 as energy source (\u3bcmax 0.19 \ub1 0.02 h\u20131, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 \ub1 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions

    Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy

    Get PDF
    The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60\ub0C), low pH (3\u20135) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60\ub0C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at \u3bcmax (0.051 \ub1 0.001 h 121, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3\u20135 at 50\ub0C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 \ub1 1 \u3bcM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Changing active sites in Cu–CHA catalysts: deNOx selectivity as a function of the preparation method

    Get PDF
    The selective catalytic reduction of NOx with ammonia (NH3–SCR) has been studied over Cu–CHA catalysts in which the loading of copper species was achieved using three different synthetic routes: two are based on post-synthetic treatment of the zeolite material (via aqueous or vapor phase) and a third involves the direct synthesis of a Cu-loaded SAPO-34. The catalysts were subsequently characterized by XRD, solid-state NMR, UV–vis and XAFS spectroscopies. Whilst the catalysts prepared via wet chemical routes show excellent deNOx activity and high selectivity to N2, the one prepared via chemical vapor deposition gave the undesired product N2O in significant quantities. Isolated mononuclear Cu2+ ions in the vicinity of six-membered rings (6mrs, part of the d6r sub-units of CHA) were found to be active sites in both catalysts prepared via the wet chemical approaches. In contrast, XAFS data revealed that the catalyst prepared via chemical vapor deposition possesses Cu in two different environments: isolated Cu2+ cations and CuAlO2-type species. Catalytic experiments revealed a strong correlation between the number of isolated mononuclear Cu2+ in or near the plane of the 6m rings and N2 production, whereas the presence of CuAlO2 species appears to promote the formation of undesired N2O

    Semilinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Quasi-variational inequalities with Dirichlet boundary condition related to exit-time problems for impulse control

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore