5 research outputs found

    Safety of the Combination of PERC and YEARS Rules in Patients With Low Clinical Probability of Pulmonary Embolism: A Retrospective Analysis of Two Large European Cohorts

    Get PDF
    BACKGROUND: This study aimed to determine the failure rate of a combination of the PERC and the YEARS rules for the diagnosis of pulmonary embolism (PE) in the emergency department (ED). METHODS: We performed a retrospective analysis of two European cohorts of emergency patients with low gestalt clinical probability of PE (PROPER and PERCEPIC). All patients we included were managed using a conventional strategy (D-dimer test, followed, if positive, by computed tomographic pulmonary angiogram (CTPA). We tested a diagnostic strategy that combined PERC and YEARS to rule out PE. The primary endpoint was a thromboembolic event diagnosed in the ED or at 3-months follow-up. Secondary endpoints included a thromboembolic event at baseline in the ED and a CTPA in the ED. Ninety-five percent confidence intervals (CIs) of proportions were calculated with the use of Wilson\u27s continuity correction. RESULTS: We analyzed 1,951 patients (mean ± SD age = 47 ± 18 years, 56% women) with an overall proportion of patients with PE of 3.5%. Both PERC and YEARS strategies were associated with 11 missed PE in the ED: failure rate 0.57 (95% CI = 0.32-1.02). At 3-month follow-up, the overall failure rate was 0.83% (95% CI = 0.51-1.35). Among the 503 patients who underwent a CTPA (26%), the use of the PERC-YEARS combination would have ruled out PE without CTPA in 249 patients (50% [95%CI = 45%-54%], absolute reduction 13% (95% CI = 11%-14%]). CONCLUSION: The combination of PERC then YEARS was associated with a low risk of PE diagnostic failure and would have resulted in a relative reduction of almost half of CTPA

    Factors influencing the quality of frozen fruits and vegetables = Facteurs affectant la qualité des fruits et légumes surgelés

    No full text
    Extrait de documentFruit and vegetables are very sensitive to freezing damage. Chemical and physical actions of freezing are highly detrimental to these products since their texture is mainly ensured by turgor (apples, berries, peaches, tomatoes, lettuce, spinachs, etc.). Turgor is the ability to retain water inside the cells. Rupture of cell walls due to the intracellular expansion of ice and/or enzymatic actions during freezing, prevents a return to the initial state. The product will exhibit a loss of cellular structure, which can show itself in increased drip loss while thawing, loss of shape and a less defined texture. Liquid water is the molecule most involved in deterioration reactions. It provides a medium for diffusion of all other molecules involved in deterioration reactions. Water can also participate in deterioration reactions directly. Deterioration reactions are many-fold and include : production of off-flavours; production of toxic substances by micro organisms; changes in colour due to enzymatic or non enzymatic reactions on pigments (especially browning). Water can also migrate within food towards surfaces and then evaporate, re-crystallising as ice on cold outer surfaces. Food surfaces become dry. Colour tarnishes. Event at -18°C, a fraction of food-constituent water remains liquid and free for these reactions. Water can also migrate from ice crystals present in food. Food surface is the first affected since it is closest to the refrigerating medium (most often air). If pre-freezing, freezing and storage operations are not conducted with an appreciation for the nature of the food, frozen products many resemble their fresh counterparts by name only.Les fruits et légumes sont très sensibles aux dégâts dus à la congélation. L'activité tant chimique que physique de la congélation est hautement préjudiciable à ces produits car leur texture dépend principalement de leur turgescence (pommes, baies, pêches, tomates, laitues, épinards etc.). La turgescence est la capacité à retenir l'eau à l'intérieur des cellules. La rupture de la membrane cellulaire à la suite de l'expansion intracellulaire provoquée par l'activité enzymatique et/ou par la formation de la glace durant la congélation interdit le retour à l'état initial. Le produit peut ainsi présenter une perte de structure cellulaire qui peut se manifester par une exsudation accrue lors de la décongélation, par une perte de forme et par une modification de texture. L'eau liquide est la molécule la plus concernée par les réactions de détérioration. Elle fournit un milieu de diffusion pour toutes les autres molécules concernées par les réactions de détérioration. L'eau peut aussi participer directement aux réactions de détérioration. Les réactions de détérioration sont nombreuses, incluant : la production de saveurs indésirables; la production par des micro-organismes de substances toxiques; des modifications de la couleur dues à des réactions enzymatiques et non enzymatiques sur les pigments (en particulier, brunissement). L'eau peut aussi migrer de l'intérieur des aliments vers la surface puis s'évaporer et recristalliser sous forme de glace sur les surfaces extérieures froides. La surface des aliments demeure sèche ; la couleur ternit. Même à -18° C, une fraction de l'eau constituant l'aliment demeure liquide et disponible pour ces réactions. L'eau peut aussi migrer hors des cristaux de glace présents dans l'aliment. La surface d'un aliment est la première affectée puisqu'elle est la plus proche du milieu réfrigérant (le plus souvent , l'air). Si les opérations de précongélation, congélation et stockage ne sont pas conduites en fonction de la nature des denrées, les produits surgelés ne ressembleront à leurs équivalents frais que par leur nom
    corecore