5 research outputs found
Isolation and characterization of two plant growth-promoting bacteria from the rhizoplane of a legume (Lupinus albescens) in sandy soil
Duas linhagens bacterianas que apresentaram amplificação de parte do gene nifH, RP1p e RP2p, pertencentes aos gêneros Enterobacter e Serratia, foram isoladas do rizoplano de Lupinus albescens. Essas bactérias são Gram-negativas, com formato de bastonete, móveis, anaeróbias facultativas e apresentam multiplicação rápida, com colônias alcançando diâmetros de 3–4 mm em 24 h de incubação a 28 ºC. RP1p e RP2p também foram capazes de multiplicação em temperaturas elevadas, como 40 ºC, na presença de alta concentração de NaCl (2–3 % v/v) e em valores de pH que variaram de 4 a 10. A linhagem RP1p foi capaz de utilizar 10 das 14 fontes de carbono avaliadas, enquanto a linhagem RP2p utilizou nove. Os isolados produziram sideróforos e compostos indólicos, mas foram incapazes de solubilizar fosfatos. A inoculação de L. albescens com as linhagens RP1p e RP2p resultou em aumento significativo do peso das plantas secas, o que demonstra que essas bactérias apresentam propriedades que favorecem o crescimento vegetal.Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3–4 mm within 24 h of incubation at 28 °C. The bacteria were also able to grow at temperatures as high as 40 °C, in the presence of high (2–3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria
“Cross talk” between bacteria associated with the roots of canola and wheat
Non-Peer ReviewedPhenazine antibiotics are produced by some soil bacteria and suppress growth of many fungi that cause plant diseases. N-acetyl-homoserine lactone (AHL) is a type of signal molecule that can activate the production of phenazine in bacteria. This response is referred to as “cross talk.” In this study, bacteria from the rhizosphere and root interior of canola and wheat were screened for AHL production. Our results show that approximately 4% of the isolates produced AHL. Pseudomonas corrugata and P. savastanoi were the most common bacteria associated with canola that produced AHL, whereas Enterobacter agglomerans and P. corrugata were the most common in wheat. This study shows that there is a small community of AHL-producing bacteria associated with the roots of both canola and wheat, suggesting that “cross-talking” between bacteria in roots is possible