16 research outputs found

    Predicting police behavior: Ecology, class, and autonomy

    No full text
    Social ecological theories of crime have recently been extended to explain spatial variation in police behavior. Although these theories successfully identify community characteristics affecting local policing, they fail to acknowledge the class-based origins of formal social control and the relative autonomy of the police. This paper addresses the neglected class issue by integrating social ecological and critical theories in a model of police behavior. Cross-sectional data was obtained from twenty-five police agencies\u27 vice divisions and their corresponding jurisdictions to test the integrated hypothesis. Four social ecological variables and a fiscal measure of relative autonomy are examined as police behavior predictors. Findings reveal that both the autonomy measure and three of the social ecological variables explain significant variance in police behavior, thus supporting the inclusion of structural Marxism in a general theory of police behavior

    Pkh1 and Pkh2 Differentially Phosphorylate and Activate Ypk1 and Ykr2 and Define Protein Kinase Modules Required for Maintenance of Cell Wall Integrity

    No full text
    Saccharomyces cerevisiae Pkh1 and Pkh2 are functionally redundant homologs of mammalian protein kinase, phosphoinositide-dependent protein kinase-1. They activate two closely related, functionally redundant enzymes, Ypk1 and Ykr2 (homologs of mammalian protein kinase, serum- and glucocorticoid-inducible protein kinase). We found that Ypk1 has a more prominent role than Ykr2 in mediating their shared essential function. Considerable evidence demonstrated that Pkh1 preferentially activates Ypk1, whereas Pkh2 preferentially activates Ykr2. Loss of Pkh1 (but not Pkh2) reduced Ypk1 activity; conversely, Pkh1 overexpression increased Ypk1 activity more than Pkh2 overexpression. Loss of Pkh2 reduced Ykr2 activity; correspondingly, Pkh2 overexpression increased Ykr2 activity more than Pkh1 overexpression. When overexpressed, a catalytically active C-terminal fragment (kinase domain) of Ypk1 was growth inhibitory; loss of Pkh1 (but not Pkh2) alleviated toxicity. Loss of Pkh2 (but not Pkh1) exacerbated the slow growth phenotype of a ypk1Δ strain. This Pkh1-Ypk1 and Pkh2-Ykr2 dichotomy is not absolute because all double mutants (pkh1Δ ypk1Δ, pkh2Δ ypk1Δ, pkh1Δ ykr2Δ, and pkh2Δ ykr2Δ) were viable. Compartmentation contributes to selectivity because Pkh1 and Ypk1 were located exclusively in the cytosol, whereas Pkh2 and Ykr2 entered the nucleus. At restrictive temperature, ypk1-1(ts) ykr2Δ cells lysed rapidly, but not in medium containing osmotic support. Dosage and extragenic suppressors were selected. Overexpression of Exg1 (major exoglucanase), or loss of Kex2 (endoprotease involved in Exg1 processing), rescued growth at high temperature. Viability was also maintained by PKC1 overexpression or an activated allele of the downstream protein kinase (BCK1-20). Conversely, absence of Mpk1 (distal mitogen-activated protein kinase of the PKC1 pathway) was lethal in ypk1-1(ts) ykr2Δ cells. Thus, Pkh1-Ypk1 and Pkh2-Ykr2 function in a novel pathway for cell wall integrity that acts in parallel with the Pkc1-dependent pathway
    corecore