5 research outputs found
Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh
Concentrations of five heavy metals (Pb, Cd, Cr, As and Hg) in eight highly consumed cultured fish species (Labeo rohita, Clarias gariepinus, Hypophthalmichthys molitrix, Cyprinus capio, Puntius sarana, Oreochromis mossambicus, Pangasius pangasius and Anabas testudineus) collected from four wholesale markets of Dhaka city, Bangladesh (Karwan Bazar, Mohammadpur Town Hall, Newmarket and Mirpur-1) were measured using atomic absorption spectrometry (AAS) in order to evaluate the potential human health risks from the consumption of fish. The estimated daily intake (EDI) of all the studied heavy metals calculated on the basis of mean fish consumption of 49.5 g personâ1 dâ1 by Bangladeshi households indicated that no risk to peopleâs health with respect to the EDI of investigated heavy metals through the consumption of the fish samples. From the human health point of view, the estimation of non-carcinogenic risk indicated that intake of individual heavy metal through the consumption of fish was safe for human health, whereas, consumption of combined heavy metals suggested potential health risk to highly exposed consumers. However, the estimation of carcinogenic risk of arsenic due to the consumption of fish indicated that consumers remain at risk of cancer. Keywords: Heavy metals, Fish, Estimated daily intake, Carcinogenic and non-carcinogenic risk, Human health risk
Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment
Mn3O4 nanoparticles (NPs) were synthesized from the reduction of KMnO4 with glycerol at 80 °C in aqueous media via a gel formation route. In order to investigate the thermal stability and phase transformation, Mn3O4 NPs were subjected to heat treatment from 200 °C to 700 °C. The formation of different MnOx species observed by X-ray diffraction (XRD) measurements showed temperature dependent phase transformation occurring during the heat treatment process. XRD patterns showed that Mn3O4 NPs were formed at a temperature of 80 °C and two new phases Mn5O8 and Mn2O3 were appeared at 350 °C and 700 °C respectively. The three different oxides having their distinct surface morphologies viz., spherical, rod and cube shape respectively, were observed. Detailed morphological and structural investigations using Field Emission Scanning Electron Microscopy (FESEM), XRD, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) revealed the temperature dependent phases, crystal structures, lattice constants, particle sizes and surface morphologies of the MnOx species
A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives
With the development of nanotechnology, silver nanoparticles (Ag-NPs) have become one of the most in-demand nanoparticles owing to their exponential number of uses in various sectors. The increased use of Ag-NPs-enhanced products may result in an increased level of toxicity affecting both the environment and living organisms. Several studies have used different model cell lines to exhibit the cytotoxicity of Ag-NPs, and their underlying molecular mechanisms. This review aimed to elucidate different properties of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of action and subsequent defense mechanisms observed in vitro. Our results show that the properties of Ag-NPs largely vary based on the diversified synthesis processes. The physiochemical properties of Ag-NPs (e.g., size, shape, concentration, agglomeration, or aggregation interaction with a biological system) can cause impairment of mitochondrial function prior to their penetration and accumulation in the mitochondrial membrane. Thus, Ag-NPs exhibit properties that play a central role in their use as biocides along with their applicability in environmental cleaning. We herein report a current review of the synthesis, applicability, and toxicity of Ag-NPs in relation to their detailed characteristics
Size controlled biosynthesis of silver nanoparticles using Ophiorrhiza mungos, Ophiorrhiza harrisiana and Ophiorrhiza rugosa aqueous leaf extract and their antimicrobial activity
In this work, the aqueous leaf extracts of three Ophiorrhiza genus species, namely Ophiorrhiza mungos (Om), Ophiorrhiza harrisiana (Oh) and Ophiorrhiza rugosa (Or), have been used as the reducing and capping agents to control the size of AgNPs, Om-AgNPs, Oh-AgNPs and Or-AgNPs, respectively and found to be an effective antimicrobial agent against a wide range of bacteria and fungi. The biosynthesized AgNPs were studied by UV–Visible spectrophotometer, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM) and Fourier transform infrared spectrometer (FTIR). The average particle sizes of Om-AgNPs, Oh-AgNPs and Or-AgNPs were measured as 17 nm, 22 nm and 26 nm, respectively, and observed to be spherical and face-centered cubic crystals. The antibacterial test of synthesized AgNPs was performed against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Vibrio cholerae where the maximum antibacterial activity was observed by reducing the nano-size and increasing the silver content of AgNPs. The antifungal effect of these three types of AgNPs on Penicillium notatum and Aspergillus niger was also evaluated and their growth with AgNPs concentrations of 450 μg/mL was inhibited up to 80–90% and 55–70%, respectively. The size-control synthesis of AgNPs using the Ophiorrhiza genus species is presented here for the first time where the synthesized AgNPs showed higher stability and antimicrobial activities. Therefore, this study might lead to synthesize AgNPs with different morphologies using plant extracts of the same genus but from different species and provide strong encouragement for future applications in treating infectious diseases