280 research outputs found

    Electron spin relaxation by nuclei in semiconductor quantum dots

    Full text link
    We have studied theoretically the electron spin relaxation in semiconductor quantum dots via interaction with nuclear spins. The relaxation is shown to be determined by three processes: (i) -- the precession of the electron spin in the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) -- the precession of the nuclear spins in the hyperfine field of the electron; and (iii) -- the precession of the nuclear spin in the dipole field of its nuclear neighbors. In external magnetic fields the relaxation of electron spins directed along the magnetic field is suppressed. Electron spins directed transverse to the magnetic field relax completely in a time on the order of the precession period of its spin in the field of the frozen fluctuation of the nuclear spins. Comparison with experiment shows that the hyperfine interaction with nuclei may be the dominant mechanism of electron spin relaxation in quantum dots

    Hubbard-U calculations for Cu from first-principles Wannier functions

    Full text link
    We present first-principles calculations of optimally localized Wannier functions for Cu and use these for an ab-initio determination of Hubbard (Coulomb) matrix elements. We use a standard linearized muffin-tin orbital calculation in the atomic-sphere approximation (LMTO-ASA) to calculate Bloch functions, and from these determine maximally localized Wannier functions using a method proposed by Marzari and Vanderbilt. The resulting functions were highly localized, with greater than 89% of the norm of the function within the central site for the occupied Wannier states. Two methods for calculating Coulomb matrix elements from Wannier functions are presented and applied to fcc Cu. For the unscreened on-site Hubbard UU for the Cu 3d-bands we have obtained about 25eV. These results are also compared with results obtained from a constrained local-density approximation (LDA) calculation.Comment: 13 pages, 8 figures, 5 table

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    Testing quantum correlations in a confined atomic cloud by scattering fast atoms

    Full text link
    We suggest measuring one-particle density matrix of a trapped ultracold atomic cloud by scattering fast atoms in a pure momentum state off the cloud. The lowest-order probability of the inelastic process, resulting in a pair of outcoming fast atoms for each incoming one, turns out to be given by a Fourier transform of the density matrix. Accordingly, important information about quantum correlations can be deduced directly from the differential scattering cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR

    Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states

    Full text link
    In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.

    Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure

    Full text link
    "Realistic modeling" is a new direction of electronic structure calculations, where the main emphasis is made on the construction of some effective low-energy model entirely within a first-principle framework. Ideally, it is a model in form, but with all the parameters derived rigorously, on the basis of first-principles electronic structure calculations. The method is especially suit for transition-metal oxides and other strongly correlated systems, whose electronic and magnetic properties are predetermined by the behavior of some limited number of states located near the Fermi level. After reviewing general ideas of realistic modeling, we will illustrate abilities of this approach on the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y) with distorted perovskite structure. Particular attention will be paid to computational tools, which can be used for microscopic analysis of different spin and orbital states in the partially filled t2g-band. We will explicitly show how the lifting of the orbital degeneracy by the monoclinic distortion stabilizes C-type antiferromagnetic (AFM) state, which can be further transformed to the G-type AFM state by changing the crystal distortion from monoclinic to orthorhombic one. Two microscopic mechanisms of such a stabilization, associated with the one-electron crystal field and electron correlation interactions, are discussed. The flexibility of the orbital degrees of freedom is analyzed in terms of the magnetic-state dependence of interatomic magnetic interactions.Comment: 23 pages, 13 figure

    Current-density functional for disordered systems

    Get PDF
    The effective action for the current and density is shown to satisfy an evolution equation, the functional generalization of Callan-Symanzik equation. The solution describes the dependence of the one-particle irreducible vertex functions on the strength of the quenched disorder and the annealed Coulomb interaction. The result is non-perturbative, no small parameter is assumed. The a.c. conductivity is obtained by the numerical solution of the evolution equation on finite lattices in the absence of the Coulomb interaction. The static limit is performed and the conductivity is found to be vanishing beyond a certain threshold of the impurity strength.Comment: final version, 28 pages, 17 figures, to appear in Phys. Rev.

    Effective action and density functional theory

    Get PDF
    The effective action for the charge density and the photon field is proposed as a generalization of the density functional. A simple definition is given for the density functional, as the functional Legendre transform of the generator functional of connected Green functions for the density and the photon field, offering systematic approximation schemes. The leading order of the perturbation expansion reproduces the Hartree-Fock equation. A renormalization group motivated method is introduced to turn on the Coulomb interaction gradually and to find corrections to the Hartree-Fock and the Kohn-Sham schemes.Comment: New references and a numerical algorithm added, to appear in Phys. Rev. B. 30 pages, no figure

    Maximally-localized Wannier functions for entangled energy bands

    Full text link
    We present a method for obtaining well-localized Wannier-like functions (WFs) for energy bands that are attached to or mixed with other bands. The present scheme removes the limitation of the usual maximally-localized WFs method (N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)) that the bands of interest should form an isolated group, separated by gaps from higher and lower bands everywhere in the Brillouin zone. An energy window encompassing N bands of interest is specified by the user, and the algorithm then proceeds to disentangle these from the remaining bands inside the window by filtering out an optimally connected N-dimensional subspace. This is achieved by minimizing a functional that measures the subspace dispersion across the Brillouin zone. The maximally-localized WFs for the optimal subspace are then obtained via the algorithm of Marzari and Vanderbilt. The method, which functions as a postprocessing step using the output of conventional electronic-structure codes, is applied to the s and d bands of copper, and to the valence and low-lying conduction bands of silicon. For the low-lying nearly-free-electron bands of copper we find WFs which are centered at the tetrahedral interstitial sites, suggesting an alternative tight-binding parametrization.Comment: 13 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macro

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure
    • …
    corecore