346 research outputs found
Polydimethylsiloxane (PDMS)-based microfluidic channel with integrated commercial pressure sensors
The precise characterisation of boiling in microchannels is essential for the optimisation of applications requiring two phase cooling. In this paper polydimethylsiloxane (PDMS) is employed to make microchannels for characterising microboiling. In particular the material properties of PDMS facilitate rapid prototyping and its optical transparency provides the capability to directly view any fluid flow. The production of microchannels is complicated by the need to integrate custom made sensors. This paper presents a PDMS microfluidic device with integrated commercial pressure sensors, which have been used to perform a detailed characterisation of microboiling phenomena. The proposed approach of integrating commercial pressure sensors into the channel also has potential applications in a range of other microsystems
The application of fixed hydrophobic patterns for confinement of aqueous solutions in proteomic microarrays
A protein microarray hybridisation system has been implemented by employing patterned hydrophobic thin films on hydrophilic substrates as a means of confinement for aqueous samples. This approach has the ability to handle, and keep separate, small sample volumes of just a few microlitres. In addition, the system is more straightforward to use than the existing multi-well gasket solution. The paper describes the fabrication method and the system is demonstrated for a model protein microarray assay
Stress Analysis of Three Marginal Configurations of Full Posterior Crowns by Three-Dimensional Photoelasticity
A simplified method was developed by which three-dimensional composite photoelastic models were constructed. The optimum marginal configuration for the stress distribution was determined and was found to be of the chamfer type.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66544/2/10.1177_00220345740530052501.pd
Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink
Copyright @ 2011 ElsevierTwo-phase flow boiling in microchannels is one of the most promising cooling technologies for coping with high heat fluxes produced by the next generation of central processor units (CPUs). If flow boiling is to be used as a thermal management method for high heat flux electronics it is necessary to understand the behaviour of a non-uniform heat distribution, which is typically the case observed in a real operating CPU. The work presented is an experimental study of two-phase boiling in a multi-channel silicon heat sink with non-uniform heating, using water as the cooling liquid. Thin nickel film sensors, integrated on the back side of the heat sinks were used in order to gain insight related to temperature fluctuations caused by two-phase flow instabilities under non-uniform heating. The effect of various hotspot locations on the temperature profile and pressure drop has been investigated. It was observed that boiling inside microchannels with axially non-uniform heating leads to high temperature non-uniformity in the transverse direction.This research was supported by the UK Engineering and Physical Sciences Research Council through grant EP/D500109/1
Modification and characterisation of material hydrophobicity for surface acoustic wave driven microfluidics
Surface acoustic waves (SAW) generated in a piezoelectric substrate may be used to manipulate micro-scale droplets of liquid in a digital microfluidic system for lab-on-a-chip applications. The wettability of the surface over which a droplet is driven determines the ease and speed with which the droplet is propelled. This provides the opportunity to achieve fine control of SAW driven droplets simply by patterning of the surface into areas with different levels of wettability. This paper evaluates a number of different materials and surface preparation techniques and assesses their manufacturability and efficacy for this application. Test structures have been designed and developed to help optimise a fabrication process using the biocompatible polymer Parylene. Early results obtained using airflow as a driving force show that it is possible to manipulate droplets through direction changes of up to 60°. Additional work has been done using surface acoustic waves as the driving force to determine the extent to which droplets can be guided to desired locations
Aging in a topological spin glass
We have examined the nonconventional spin glass phase of the 2-dimensional
kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc
magnetic measurements. The frequency dependence of the ac susceptibility peak
is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature
below Tg, aging effects are found which obey the same scaling law as in spin
glasses or polymers. However, in clear contrast with conventional spin glasses,
aging is remarkably insensitive to temperature changes. This particular type of
dynamics is discussed in relation with theoretical predictions for highly
frustrated non-disordered systems.Comment: 4 pages, 4 figure
The use of hydrogen to separate and recycle neodymium–iron–boron-type magnets from electronic waste
AbstractThe rare earth metals have been identified by the European Union and the United States as being at greatest supply risk of all the materials for clean energy technologies. Of particular concern are neodymium and dysprosium, both of which are employed in neodymium–iron–boron based magnets. Recycling of magnets based on these materials and contained within obsolete electronic equipment, could provide an additional and secure supply. In the present work, hydrogen has been employed as a processing agent to decrepitate sintered neodymium–iron–boron based magnets contained within hard disk drives into a demagnetised, hydrogenated powder. This powder was then extracted mechanically from the devices with an extraction efficiency of 90 ± 5% and processed further using a combination of sieves and ball bearings, to produce a powder containing <330 parts per million of nickel contamination. It is then possible for the extracted powder to be re-processed in a number of ways, namely, directly by blending and re-sintering to form fully dense magnets, by Hydrogenation, Disproportionation, Desorption, Recombination processing to produce an anisotropic coercive powder suitable for bonded magnets, by re-melting; or by chemical extraction of the rare earth elements from the alloy. For example, it was shown that, by the re-sintering route, it was possible to recover >90% of the magnetic properties of the starting material with significantly less energy than that employed in primary magnet production. The particular route used will depend upon the magnetic properties required, the level of contamination of the extracted material and the compositional variation of the feedstock. The various possibilities have been summarised in a flow diagram
- …