1,297 research outputs found

    Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

    Full text link
    We examine the spin-SS quantum Heisenberg magnet with Gaussian-random, infinite-range exchange interactions. The quantum-disordered phase is accessed by generalizing to SU(M)SU(M) symmetry and studying the large MM limit. For large SS the ground state is a spin-glass, while quantum fluctuations produce a spin-fluid state for small SS. The spin-fluid phase is found to be generically gapless - the average, zero temperature, local dynamic spin-susceptibility obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn} (\omega) at low frequencies. This form is identical to the phenomenological `marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from [email protected]

    Stereoscopic vision in the absence of the lateral occipital cortex

    Get PDF
    Both dorsal and ventral cortical visual streams contain neurons sensitive to binocular disparities, but the two streams may underlie different aspects of stereoscopic vision. Here we investigate stereopsis in the neurological patient D.F., whose ventral stream, specifically lateral occipital cortex, has been damaged bilaterally, causing profound visual form agnosia. Despite her severe damage to cortical visual areas, we report that DF's stereo vision is strikingly unimpaired. She is better than many control observers at using binocular disparity to judge whether an isolated object appears near or far, and to resolve ambiguous structure-from-motion. DF is, however, poor at using relative disparity between features at different locations across the visual field. This may stem from a difficulty in identifying the surface boundaries where relative disparity is available. We suggest that the ventral processing stream may play a critical role in enabling healthy observers to extract fine depth information from relative disparities within one surface or between surfaces located in different parts of the visual field

    New quantum phase transitions in the two-dimensional J1-J2 model

    Full text link
    We analyze the phase diagram of the frustrated Heisenberg antiferromagnet, the J1-J2 model, in two dimensions. Two quantum phase transitions in the model are already known: the second order transition from the Neel state to the spin liquid state at (J_2/J_1)_{c2}=0.38, and the first order transition from the spin liquid state to the collinear state at (J_2/J_1)_{c4}=0.60. We have found evidence for two new second order phase transitions: the transition from the spin columnar dimerized state to the state with plaquette type modulation at (J_2/J_1)_{c3}=0.50(2), and the transition from the simple Neel state to the Neel state with spin columnar dimerization at (J_2/J_1)_{c1}=0.34(4). We also present an independent calculation of (J_2/J_1)_{c2}=0.38 using a new approach.Comment: 3 pages, 5 figures; added referenc

    Charge and spin density wave ordering transitions in strongly correlated metals

    Full text link
    We study the quantum transition from a strongly correlated metal, with heavy fermionic quasiparticles, to a metal with commensurate charge or spin density wave order. To this end, we introduce and numerically analyze a large dimensionality model of Ising spins in a transverse field, coupled to two species of fermions; the analysis borrows heavily from recent progress in the solution of the Hubbard model in large dimensions. At low energies, the Ising order parameter fluctuations are characterized by the critical exponent zν=1z \nu = 1, while above an energy scale, Γ\Gamma, there is a crossover to zν=1/2z\nu = 1/2 criticality. We show that Γ\Gamma is of the order of the width of the heavy quasiparticle band, and can be made arbitrarily small for a correlated metal close to a Mott-Hubbard insulator. Therefore, such a correlated metal has a significant intermediate energy range of zν=1/2z\nu=1/2 behavior, a single particle spectrum with a narrow quasiparticle band, and well-formed analogs of the lower and upper Hubbard bands; we suggest that these features are intimately related in general.Comment: 14 pages, REVTEX 3.0, 2 postscript figure

    Atomic Model of Susy Hubbard Operators

    Full text link
    We apply the recently proposed susy Hubbard operators to an atomic model. In the limiting case of free spins, we derive exact results for the entropy which are compared with a mean field + gaussian corrections description. We show how these results can be extended to the case of charge fluctuations and calculate exact results for the partition function, free energy and heat capacity of an atomic model for some simple examples. Wavefunctions of possible states are listed. We compare the accuracy of large N expansions of the susy spin operators with those obtained using `Schwinger bosons' and `Abrikosov pseudo-fermions'. For the atomic model, we compare results of slave boson, slave fermion, and susy Hubbard operator approximations in the physically interesting but uncontrolled limiting case of N->2. For a mixed representation of spins we estimate the accuracy of large N expansions of the atomic model. In the single box limit, we find that the lowest energy saddle-point solution reduces to simply either slave bosons or slave fermions, while for higher boxes this is not the case. The highest energy saddle-point solution has the interesting feature that it admits a small region of a mixed representation, which bears a superficial resemblance to that seen experimentally close to an antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision

    Host responses are induced in feathers of chickens infected with Marek's disease virus

    Get PDF
    AbstractControl measures are ineffective in curtailing Marek's disease virus (MDV) infection and replication in the feather follicle epithelium (FFE). Therefore, vaccinated birds which subsequently become infected with MDV, shed the virulent virus although they remain protected against disease. The present study investigated host responses generated against MDV infection in the feather. We observed that in parallel with an increase in viral genome load and viral replication in the feather, there was a gradual but progressive increase in infiltration of CD4+ and CD8+ T cells into the feather pulp of MDV-infected chickens, starting on day 4 and peaking by day 10 post-infection. Concomitant with infiltration of T cells, the expression of interleukin (IL)-18, IL-6, interferon (IFN)-γ and major histocompatibility complex class I genes was significantly enhanced in the feather pulp of MDV-infected chickens. The finding that host responses are generated in the feather may be exploited for developing strategies to control MDV infection in the FFE, thus preventing horizontal virus transmission

    Shift of percolation thresholds for epidemic spread between static and dynamic small-world networks

    Full text link
    The aim of the study was to compare the epidemic spread on static and dynamic small-world networks. The network was constructed as a 2-dimensional Watts-Strogatz model (500x500 square lattice with additional shortcuts), and the dynamics involved rewiring shortcuts in every time step of the epidemic spread. The model of the epidemic is SIR with latency time of 3 time steps. The behaviour of the epidemic was checked over the range of shortcut probability per underlying bond 0-0.5. The quantity of interest was percolation threshold for the epidemic spread, for which numerical results were checked against an approximate analytical model. We find a significant lowering of percolation thresholds for the dynamic network in the parameter range given. The result shows that the behaviour of the epidemic on dynamic network is that of a static small world with the number of shortcuts increased by 20.7 +/- 1.4%, while the overall qualitative behaviour stays the same. We derive corrections to the analytical model which account for the effect. For both dynamic and static small-world we observe suppression of the average epidemic size dependence on network size in comparison with finite-size scaling known for regular lattice. We also study the effect of dynamics for several rewiring rates relative to latency time of the disease.Comment: 13 pages, 6 figure

    Lowest-Landau-level theory of the quantum Hall effect: the Fermi-liquid-like state

    Full text link
    A theory for a Fermi-liquid-like state in a system of charged bosons at filling factor one is developed, working in the lowest Landau level. The approach is based on a representation of the problem as fermions with a system of constraints, introduced by Pasquier and Haldane (unpublished). This makes the system a gauge theory with gauge algebra W_infty. The low-energy theory is analyzed based on Hartree-Fock and a corresponding conserving approximation. This is shown to be equivalent to introducing a gauge field, which at long wavelengths gives an infinite-coupling U(1) gauge theory, without a Chern-Simons term. The system is compressible, and the Fermi-liquid properties are similar, but not identical, to those in the previous U(1) Chern-Simons fermion theory. The fermions in the theory are effectively neutral but carry a dipole moment. The density-density response, longitudinal conductivity, and the current density are considered explicitly.Comment: 32 pages, revtex multicol

    Multiplet Effects in the Quasiparticle Band Structure of the f1−f2f^1-f^2 Anderson Model

    Full text link
    In this paper, we examine the mean field electronic structure of the f1−f2f^1-f^2 Anderson lattice model in a slave boson approximation, which should be useful in understanding the physics of correlated metals with more than one f electron per site such as uranium-based heavy fermion superconductors. We find that the multiplet structure of the f2f^2 ion acts to quench the crystal field splitting in the quasiparticle electronic structure. This is consistent with experimental observations in such metals as UPt3UPt_3.Comment: 9 pages, revtex, 3 uuencoded postscript figures attached at en

    Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states

    Full text link
    When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it has the same symmetries as an ensemble of random matrices known as class D. A nonlinear sigma model analysis of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or spin-polarized p-wave superconductors and paired fractional quantum Hall states allow a mapping onto an Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered or weak-pairing phase, in which nonabelian statistics is obtained in the pure case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe
    • …
    corecore