The aim of the study was to compare the epidemic spread on static and dynamic
small-world networks. The network was constructed as a 2-dimensional
Watts-Strogatz model (500x500 square lattice with additional shortcuts), and
the dynamics involved rewiring shortcuts in every time step of the epidemic
spread. The model of the epidemic is SIR with latency time of 3 time steps. The
behaviour of the epidemic was checked over the range of shortcut probability
per underlying bond 0-0.5. The quantity of interest was percolation threshold
for the epidemic spread, for which numerical results were checked against an
approximate analytical model. We find a significant lowering of percolation
thresholds for the dynamic network in the parameter range given. The result
shows that the behaviour of the epidemic on dynamic network is that of a static
small world with the number of shortcuts increased by 20.7 +/- 1.4%, while the
overall qualitative behaviour stays the same. We derive corrections to the
analytical model which account for the effect. For both dynamic and static
small-world we observe suppression of the average epidemic size dependence on
network size in comparison with finite-size scaling known for regular lattice.
We also study the effect of dynamics for several rewiring rates relative to
latency time of the disease.Comment: 13 pages, 6 figure