222 research outputs found

    Virtual structural health monitoring and remaining life prediction of steel bridges

    Get PDF
    In this study a Structural Health Monitoring (SHM) system is combined with Bridge Weigh-in-Motion (B-WIM) measurements of the actual traffic loading on a bridge to carry out a fatigue damage calculation. The SHM system uses the 'Virtual Monitoring' concept, where all parts of the bridge that are not monitored directly using sensors, are 'virtually' monitored using the load information and a calibrated Finite Element (FE) model of the bridge. Besides providing the actual traffic loading on the bridge, the measurements are used to calibrate the SHM system and to update the FE model of the bridge. The newly developed Virtual Monitoring concept then uses the calibrated FE model of the bridge to calculate stress ranges and hence to monitor fatigue at locations on the bridge not directly monitored. The combination of a validated numerical model of the bridge with the actual site-specific traffic loading allows a more accurate prediction of the cumulative fatigue damage at the time of measurement and facilitates studies on the implications of traffic growth. In order to test the accuracy of the Virtual Monitoring system, a steel bridge with a cable-stayed span in the Netherlands was used for testing

    Indications of coherence-incoherence crossover in layered transport

    Get PDF
    For many layered metals the temperature dependence of the interlayer resistance has a different behavior than the intralayer resistance. In order to better understand interlayer transport we consider a concrete model which exhibits this behavior. A small polaron model is used to illustrate how the interlayer transport is related to the coherence of quasi-particles within the layers. Explicit results are given for the electron spectral function, interlayer optical conductivity and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX

    Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams

    Get PDF
    Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor  , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB

    Coherent vs incoherent interlayer transport in layered metals

    Get PDF
    The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For κ\kappa-(BEDT-TTF)2_2I3_3 we find a well-resolved peak in the angle-dependent magnetoresistance at Θ=90\Theta = 90^\circ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for β\beta''-(BEDT-TTF)2_2SF5_5CH2_2CF2_2SO3_3. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres

    Modulation of Localized States in Electroconvection

    Full text link
    We report on the effects of temporal modulation of the driving force on a particular class of localized states, known as worms, that have been observed in electroconvection in nematic liquid crystals. The worms consist of the superposition of traveling waves and have been observed to have unique, small widths, but to vary in length. The transition from the pure conduction state to worms occurs via a backward bifurcation. A possible explanation of the formation of the worms has been given in terms of coupled amplitude equations. Because the worms consist of the superposition of traveling waves, temporal modulation of the control parameter is a useful probe of the dynamics of the system. We observe that temporal modulation increases the average length of the worms and stabilizes worms below the transition point in the absence of modulation.Comment: 4 pages, 4 figure

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model

    Full text link
    An analytical nonadiabatic approach has been developed to study the dimerization gap and the optical absorption coefficient of the Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum phonons. By investigating quantitatively the effects of quantum phonon fluctuations on the gap order and the optical responses in this system, we show that the dimerization gap is much more reduced by the quantum lattice fluctuations than the optical absorption coefficient is. The calculated optical absorption coefficient and the density of states do not have the inverse-square-root singularity, but have a peak above the gap edge and there exist a significant tail below the peak. The peak of optical absorption spectrum is not directly corresponding to the dimerized gap. Our results of the optical absorption coefficient agree well with those of the experiments in both the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR

    Peak grain forecasts for the US High Plains amid withering waters

    Get PDF
    ACKNOWLEDGMENTS. This paper stems from discussions during the Ettersburg Ecohydrology Workshop in Germany (October 2018), with the corresponding manuscript preparation ensuing in subsequent months. The workshop was funded by the UNIDEL Foundation, Inc. and the University of Delaware. Accordingly, partial support for this paper derived from funding for the workshop. A.M. was supported by the US NSF (Grants NSF-AGS-1644382 and NSF-IOS-175489).Peer reviewedPublisher PD
    corecore