41 research outputs found

    Alternative mitochondrial functions in cell physiopathology: beyond ATP production

    Get PDF
    It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.24125

    Alternative mitochondrial functions in cell physiopathology: beyond ATP production

    No full text
    It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology

    Mitochondrial Permeability Transition And Oxidative Stress

    No full text
    Mitochondrial permeability transition (MPT) is a non-selective inner membrane permeabilization that may precede necrotic and apoptotic cell death. Although this process has a specific inhibitor, cyclosporin A, little is known about the nature of the proteinaceous pore that results in MPT. Here, we review data indicating that MPT is not a consequence of the opening of a pre-formed pore, but the consequence of oxidative damage to pre-existing membrane proteins. © 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.4951-21215Liu, X., Kim, C.N., Yang, J., Jemmerson, R., Wang, X., (1996) Cell, 86, pp. 147-157Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Kroemer, G., (1996) J. Exp. Med., 184, pp. 1331-1341Green, D.R., Reed, J.C., (1998) Science, 281, pp. 1309-1312Skulachev, V.P., (1998) FEBS Lett., 423, pp. 275-280Kroemer, G., (1999) Biochem. Soc. Symp., 66, pp. 1-15Zoratti, M., Szabò, I., (1995) Biochim. Biophys. Acta, 1241, pp. 139-176Kowaltowski, A.J., Vercesi, A.E., (1999) Free Radic. Biol. Med., 26, pp. 463-471Castilho, R.F., Kowaltowski, A.J., Vercesi, A.E., (1996) J. Bioenerg. Biomembr., 28, pp. 523-529Fagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., (1990) J. Biol. Chem., 265, pp. 19955-19960Vercesi, A.E., (1984) Biochem. Biophys. Res. Commun., 119, pp. 305-310Brustovetsky, N., Klingenberg, M., (1996) Biochemistry, 35, pp. 8483-8488Brdiczka, D., Beutner, G., Ruck, A., Dolder, M., Wallimann, T., (1998) Biofactors, 8, pp. 235-242Halestrap, A.P., (1999) Biochem. Soc. Symp., 66, pp. 181-203Lehninger, A.L., Vercesi, A.E., Bababunmi, E.A., (1978) Proc. Natl. Acad. Sci. USA, 75, pp. 1690-1694Hunter, D.R., Haworth, R.A., (1979) Arch. Biochem. Biophys., 195, pp. 453-459Lotscher, H.R., Winterhalter, K.H., Carafoli, E., Richter, C., (1980) J. Biol. Chem., 255, pp. 9325-9330Jurkowitz, M.S., Geisbuhler, T., Jung, D.W., Brierley, G.P., (1983) Arch. Biochem. Biophys., 223, pp. 120-128Vercesi, A.E., (1987) Arch. Biochem. Biophys., 252, pp. 171-178Byrne, A.M., Lemasters, J.J., Nieminen, A.L., (1999) Hepatology, 29, pp. 1523-1531Zago, E.B., Castilho, R.F., Vercesi, A.E., (2000) FEBS Lett., 478, pp. 29-33Bernardes, C.F., Meyer-Fernandes, J.R., Basseres, D.S., Castilho, R.F., Vercesi, A.E., (1994) Biochim. Biophys. Acta, 1188, pp. 93-100Hoek, J.B., Rydstrom, J., (1988) Biochem. J., 254, pp. 1-10Kowaltowski, A.J., Vercesi, A.E., (2000) Mitochondria in Pathogenesis, , (Lemasters, J.J. and Nieminen A.-L., Eds.), Plenum, New York, in pressGardner, P.R., Fridovich, I., (1991) J. Biol. Chem., 266, pp. 19328-19333Skulachev, V.P., (1997) Biosci. Rep., 17, pp. 347-366Peng, C.F., Straub, K.D., Kane, J.J., Murphy, M.L., Wadkins, C.L., (1977) Biochim. Biophys. Acta, 462, pp. 403-413Bernardi, P., Azzone, G.F., (1983) Eur. J. Biochem., 134, pp. 377-383Catisti, R., Vercesi, A.E., (1999) FEBS Lett., 464, pp. 97-101Kowaltowski, A.J., Vercesi, A.E., Fiskum, G., (2000) Cell Death Differ., 7, pp. 903-910Korshunov, S.S., Skulachev, V.P., Starkov, A.A., (1997) FEBS Lett., 416, pp. 15-18Skulachev, V.P., (1998) Biochim. Biophys. Acta, 1363, pp. 100-124Le Quoc, D., Le Quoc, K., Gaudemer, Y., (1976) Biochem. Biophys. Res. Commun., 68, pp. 106-113Harris, E.J., Baum, H., (1980) Biochem. J., 186, pp. 725-732Vercesi, A.E., Ferraz, V.L., Macedo, D.V., Fiskum, G., (1988) Biochem. Biophys. Res. Commun., 154, pp. 934-941Valle, V.G., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., (1993) Arch. Biochem. Biophys., 307, pp. 1-7Siliprandi, D., Scutari, G., Zoccarato, F., Siliprandi, N., (1974) FEBS Lett., 42, pp. 197-199Lenartowicz, E., Bernardi, P., Azzone, G.F., (1991) J. Bioenerg. Biomembr., 23, pp. 679-688Costantini, P., Chernyak, B.V., Petronilli, V., Bernardi, P., (1996) J. Biol. Chem., 271, pp. 6746-6751Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J., Vercesi, A.E., (1995) Free Radic. Biol. Med., 18, pp. 479-486Costantini, P., Belzacq, A.S., Vieira, H.L., Larochette, N., De Pablo, M.A., Zamzami, N., Susin, S.A., Kroemer, G., (2000) Oncogene, 19, pp. 307-314Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J., Vercesi, A.E., (1996) J. Biol. Chem., 271, pp. 2929-2934Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1996) FEBS Lett., 378, pp. 150-152Kowaltowski, A.J., Netto, L.E., Vercesi, A.E., (1998) J. Biol. Chem., 273, pp. 12766-12769Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1995) Am. J. Physiol., 269, pp. C141-C147Scorrano, L., Petronilli, V., Bernardi, P., (1997) J. Biol. Chem., 272, pp. 12295-12299Kuzminova, A.E., Zhuravlyova, A.V., Vyssokikh, M.Yu., Zorova, L.D., Krasnikov, B.F., Zorov, D.B., (1998) FEBS Lett., 434, pp. 313-316Frei, B., Winterhalter, K.H., Richter, C., (1985) J. Biol. Chem., 260, pp. 7394-7401Hermes-Lima, M., Valle, V.G., Vercesi, A.E., Bechara, E.J., (1991) Biochim. Biophys. Acta, 1056, pp. 57-63Packer, M.A., Murphy, M.P., (1995) Eur. J. Biochem., 234, pp. 231-239Gadelha, F.R., Thomson, L., Fagian, M.M., Costa, A.D.T., Radi, R., Vercesi, A.E., (1997) Arch. Biochem. Biophys., 345, pp. 243-250Grijalba, M.T., Vercesi, A.E., Schreier, S., (1999) Biochemistry, 38, pp. 13279-13287Indig, G.L., Campa, A., Bechara, E.J.H., Cilento, G., (1988) Photochem. Photobiol., 48, pp. 719-723Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M., (1997) J. Biol. Chem., 272, pp. 30615-30618Backway, K.L., McCulloch, E.A., Chow, S., Hedley, D.W., (1997) Cancer Res., 57, pp. 2446-2451Quillet-Mary, A., Jaffrezou, J.P., Mansat, V., Bordier, C., Naval, J., Laurent, G., (1997) J. Biol. Chem., 272, pp. 21388-21395Murakami, K., Kondo, T., Kawase, M., Li, Y., Sato, S., Chen, S.F., Chan, P.H., (1998) J. Neurosci., 18, pp. 205-213Fujimura, M., Morita-Fujimura, Y., Noshita, N., Sugawara, T., Kawase, M., Chan, P.H., (2000) J. Neurosci., 20, pp. 2817-2824Voehringer, D.W., Hirschberg, D.L., Xiao, J., Lu, Q., Roederer, M., Lock, C.B., Herzenberg, L.A., Herzenberg, L.A., (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 2680-2685Petersen, A., Castilho, R.F., Hansson, O., Wieloch, T., Brundin, P., (2000) Brain Res., 857, pp. 20-29Nieminen, A.L., Byrne, A.M., Herman, B., Lemasters, J.J., (1997) Am. J. Physiol., 272, pp. C1286-C1294Dhanbhoora, C.M., Babson, J.R., (1992) Arch. Biochem. Biophys., 293, pp. 130-139Ghibelli, L., Coppola, S., Fanelli, C., Rotilio, G., Civitareale, P., Scovassi, A.I., Ciriolo, M.R., (1999) FASEB J., 13, pp. 2031-2036Yang, C.F., Shen, H.M., Ong, C.N., (2000) Arch. Biochem. Biophys., 380, pp. 319-330Skulachev, V.P., (1999) Mol. Asp. Med., 20, pp. 139-18

    Ca2+-induced Mitochondrial Membrane Permeabilization: Role Of Coenzyme Q Redox State

    No full text
    Rotenone-poisoned rat liver mitochondria energized by succinate addition, after a 5-min period of preincubation in presence of 10 μM Ca2+, produce H2O2 at much faster rates, undergo extensive swelling, and are not able to retain the membrane potential and accumulated Ca2+. Similar results were obtained when a suspension of rat liver mitochondria preincubated in anaerobic medium for 5 min was reoxygenated. The addition of either ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid, ruthenium red, catalase, or dithiothreitol, just before succinate or O2 addition, prevented mitochondrial swelling, indicating the involvement of Ca2+, reactive oxygen species, and oxidation of membrane protein thiols in this process of membrane permeabilization. Inhibition of mitochondrial swelling by cyclosporin A suggests that the membrane alterations observed under these experimental conditions are related to opening of the permeability transition pore. The presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which prevents Ca2+ cycling across the membrane, did not inhibit mitochondrial swelling when Ca2+ influx into the mitochondrial matrix was driven by a high Ca2+ gradient. When rotenone plus antimycin A-poisoned mitochondria were energized by N,N,N',N'-tetramethyl-p-phenylenediamine, which reduces respiratory chain complex IV, mitochondrial swelling did not occur, unless succinate, which reduces coenzyme Q, was also added. It is concluded that reduced coenzyme Q is the electron source for oxygen radical production during Ca2+-stimulated oxidative damage of mitochondria.2691 38-1C141C14

    3,5,3'-triiodothyronine Induces Mitochondrial Permeability Transition Mediated By Reactive Oxygen Species And Membrane Protein Thiol Oxidation

    No full text
    Ca2+-loaded rat liver mitochondria treated with 3,5,3'- triiodothyronine (T3) undergo nonspecific inner membrane permeabilization, as evidenced by mitochondrial swelling, a decrease in membrane potential (ΔΨ), and an increase in the rate of oxygen uptake. T3 analogues thyroxine (T4), 3',5'-diiodothyronine (T2), and 3,5',3'-triiodothyronine (reverse T3), in decreasing order of potency, resulted in a similar but less extensive effect. Permeabilization induced by T3 is dependent on Ca2+ (1 μM) and T3 (0.5-25 μM) concentrations and is inhibited by cyclosporin A, a known inhibitor of mitochondrial permeability transition. Catalase or dithiothreitol also prevents membrane permeabilization, suggesting the participation of membrane protein thiol group oxidation induced by reactive oxygen species. The determination of the mitochondrial membrane protein thiol group content after treatment with Ca2+ and T3 shows a significant decrease, due to thiol oxidation. When mitochondria are incubated in the presence of inorganic phosphate and the protonophore carbonyl cyanide p- trifluoromethoxyphenylhydrazone, mitochondrial swelling still occurs after treatment with T3 and high Ca2+ concentrations, suggesting that mitochondrial permeabilization is not dependent on T3-induced ΔΨ or matrix pH alterations. Under these experimental conditions, when no oxygen is present in the incubation medium, no permeabilization occurs, suggesting that the permeabilization is dependent on mitochondrial-generated reactive oxygen species. Confirming this hypothesis, superoxide generation in a suspension of submitochondrial particles is increased when T3 is present. Our results lead to the conclusion that T3 induces a situation of oxidative stress in isolated liver mitochondria, with Ca2+-mediated membrane protein thiol oxidation and nonspecific inner membrane permeabilization.3541151157Soboll, S., (1993) Biochim. Biophys. Acta, 1144, pp. 1-16Luciakova, K., Nelson, D., (1992) Eur. J. Biochem., 207, pp. 247-251Joste, V., Goitom, Z., Nelson, B.D., (1989) Eur. J. Biochem., 180, pp. 235-240Van Itallie Ch., M., (1990) Endocrinology, 127, pp. 55-62Hulbert, A.J., Augee, M.L., Raison, J.K., (1976) Biochim. Biophys. Acta, 455, pp. 597-601Hoch, F.L., (1988) Prog. Lipid Res., 27, pp. 199-270Sterling, K., (1986) Endocrinology, 119, pp. 292-295Mak, I.T., Shrago, E., Elson, C.E., (1983) Arch. Biochem. Biophys., 226, pp. 317-323Verhoeven, A.J., Kamer, P., Groen, A.K., Tager, J.M., (1985) Biochem. J., 226, pp. 183-192Greif, R.L., Fiskum, G., Sloane, D.A., Lehninger, A.L., (1982) Biochem. Biophys. Res. Commun., 108, pp. 307-314Harris, E.J., Al-Shaikhaly, M., Baum, H., (1979) Biochem. J., 182, pp. 455-464Brand, M.D., Steverding, D., Kadenbach, B., Stevenson, P.M., Hafner, R.P., (1992) Eur. J. Biochem., 206, pp. 775-781Kalderon, B., Hermesh, O., Bar-Tana, J., (1995) Endocrinology, 136, pp. 3552-3556Zoratti, M., Szabò, I., (1995) Biochim. Biophys. Acta, 1241, pp. 139-176Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J.H., Vercesi, A.E., (1996) J. Biol. Chem., 271, pp. 2929-2934Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J.H., Vercesi, A.E., (1995) Free Radical Biol. Med., 18, pp. 479-486Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1995) Am. J. Physiol., 269, pp. 141-C147Fagian, M.M., Pereira-Da-Silva, L., Martins, I.S., Vercesi, A.E., (1990) J. Biol. Chem., 265, pp. 19955-19960Castilho, R.F., Kowaltowski, A.J., Vercesi, A.E., (1996) J. Bioenerg. Biomembr., 28, pp. 523-529Bindoli, A., Callegaro, M.T., Barzon, E., Benetti, M., Rigobello, M.P., (1997) Arch. Biochem. Biophys., 342, pp. 22-28Connern, C.P., Halestrap, A.P., (1994) Biochem. J., 302, pp. 321-324Pastorino, J.G., Snyder, J.W., Serroni, A., Hoek, J.B., Farber, J.L., (1993) J. Biol. Chem., 268, pp. 13791-13798Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., Kroemer, G., (1997) J. Bioenerg. Biomembr., 29, pp. 185-193Lemasters, J.J., Nieminen, A.-L., (1997) Biosci. Rep., 17, pp. 281-291Gregg, C.T., (1966) Methods Enzymol., 10, pp. 181-185Åkerman, K.E.O., Wikström, K.F., (1976) FEBS Lett., 68, pp. 191-197Kowaltowski, A.J., Vercesi, A.E., Castilho, R.F., (1997) Biochim. Biophys Acta, 1318, pp. 395-402Boveris, A., (1985) Methods Enzymol., 105, pp. 429-435Skulachev, V.P., (1996) Q. Rev. Biophys., 29, pp. 169-202Bernardi, P., Broekemeier, K.M., Pfeiffer, D.R., (1994) J. Bioenerg. Biomembr., 26, pp. 509-517Petronilli, V., Constantini, P., Scorrano, L., Colonna, R., Passamonti, S., Bernardi, P., (1994) J. Biol. Chem., 269, pp. 16638-16642Malkevitch, N.V., Dedukhova, R.A., Simonian, R.A., Skulachev, V.P., Starkov, A.A., (1997) FEBS Lett., 412, pp. 173-178Rydström, J., (1977) Biochim. Biophys. Acta, 463, pp. 155-184Hoek, J.B., Rydström, J., (1988) Biochem. J., 254, pp. 1-10Vercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., Castilho, R.F., (1997) Biosc. Rep., 17, pp. 43-52Turrens, J.F., Beconi, M., Barilla, J., Chavez, U.B., McCord, J.M., (1991) Free Radicals Res. Commun., 1213, pp. 681-689Larsen, P.R., The thyroid (1992) Cecil - Textbook of Medicine, , Philadelphia: Saunders. p. 1248-1271Fernandez, V., Llesuy, S., Solari, L., Kipreos, K., Videla, L.A., Boveris, A., (1988) Free Radicals Res. Commun., 5, pp. 77-84Fernandez, V., Videla, L.A., (1996) Toxicol. Lett., 84, pp. 149-153Asayama, K., Dobashi, K., Hayashibe, H., Megata, Y., Kato, K., (1987) Endocrinology, 121, pp. 2112-2118Martensson, J., Goodwin, C.W., Blake, R., (1992) Metabolism, 41, pp. 273-27

    The Thiol-specific Antioxidant Enzyme Prevents Mitochondrial Permeability Transition: Evidence For The Participation Of Reactive Oxygen Species In This Mechanism

    No full text
    Mitochondrial swelling and membrane protein thiol oxidation associated with mitochondrial permeability transition induced by Ca2+ and inorganic phosphate are inhibited in a dose-dependent manner either by catalase, the thiol-specific antioxidant enzyme (TSA), a protein recently demonstrated to present thiol peroxidase activity, or ebselen, a selenium-containing heterocycle which also possesses thiol peroxidase activity. This inhibition of mitochondrial permeability transition is due to the removal of mitochondrial-generated H2O2 which can easily diffuse to the extramitochondrial space. Whereas ebselen required the presence of reduced glutathione as a reductant to grant its protective effect, TSA was fully reduced by mitochondrial components. Decrease in the oxygen concentration of the reaction medium also inhibits mitochondrial permeabilization and membrane protein thiol oxidation, in a concentration-dependent manner. The results presented in this report confirm that mitochondrial permeability transition induced by Ca2+ and inorganic phosphate is reactive oxygen species- dependent. The possible importance of TSA as an intracellular antioxidant, avoiding the onset of mitochondrial permeability transition, is discussed in the text.273211276612769Gunter, T.E., Gunter, K.K., Sheu, S.-S., Gavin, C.E., (1994) Am. J. Physiol., 267, pp. C313-C339Zoratti, M., Szabó, I., (1995) Biochim. Blophys. Acta, 1241, pp. 139-176Lehninger, A.L., Vercesi, A.E., Bababunmi, E.A., (1978) Proc. Natl. Acad. Sci. U. S. A., 79, pp. 6842-6846Vercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., Castilho, R.F., (1997) Biosci. Rep., 17, pp. 43-52Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Vercesi, A.E., (1995) Free Radical Biol. & Med., 18, pp. 479-486Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1995) Am. J. Physiol., 269, pp. C141-C147Valle, V.G.R., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., (1993) Arch. Biockem. Biophys., 307, pp. 1-7Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1996) FEBS Lett., 378, pp. 150-152Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J.H., Vercesi, A.E., (1996) J. Biol. Chem., 271, pp. 2929-2934Fagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., (1990) J. Biol. Chem., 265, pp. 19955-19960Castilho, R.F., Kowaltowski, A.J., Vercesi, A.E., (1996) J. Bioenerg. Biomembr., 28, pp. 523-529Scorrano, L., Petronilli, V., Bernardi, P., (1997) J. Biol. Chem., 272, pp. 12295-12299Pastorino, J.G., Snyder, J.W., Serroni, A., Hoek, J.B., Farber, J.L., (1993) J. Biol. Chem., 268, pp. 13791-13798Griffiths, E., Halestrap, A.P., (1995) Biochem. J., 307, pp. 93-98Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., Kroemer, G., (1997) J. Bioenerg. Biomembr., 29, pp. 185-193Skulachev, V.P., (1996) FEBS Lett., 397, pp. 7-10Kim, K., Kim, I.H., Lee, K.-Y., Rhee, S.G., Stadtman, E.R., (1988) J. Biol. Chem., 263, pp. 4704-4711Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., Rhee, S.G., (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 7017-7021Chae, H.Z., Chung, S.J., Rhee, S.G., (1994) J. Biol. Chem., 269, pp. 27670-27678Netto, L.E.S., Chae, H.Z., Kang, S.-W., Rhee, S.G., Stadtman, E.R., (1996) J. Biol. Chem., 271, pp. 15315-15321Nogoceke, E., Gommel, D.U., Kieb, M., Kalisz, H.M., Flohé, L., (1997) Biol. Chem., 378, pp. 827-836Kim, I.H., Kim, K., Rhee, S.G., (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 6018-6022Watabe, S., Kohno, H., Kouyama, H., Hiroi, T., Yago, N., Nakazawa, T., (1994) J. Biochem. (Tokyo), 115, pp. 648-654Ishii, T., Kawane, T., Taketani, S., Bannai, S., (1995) Biochem. Biophys. Res. Commun., 216, pp. 970-975Sies, H., (1993) Free Radical Biol. & Med., 14, pp. 313-323Kowaltowski, A.J., Vercesi, A.E., Castilho, R.F., (1997) Biochim. Biophys. Acta, 1318, pp. 385-402Boveris, A., Martino, E., Stoppani, A.O.M., (1977) Anal. Biochem., 80, pp. 145-158Chae, H.Z., Uhm, T.B., Rhee, S.G., (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 7022-7026Tsuji, K., Copeland, N.G., Jenkins, N.A., Obinata, M., (1995) Biochem. J., 307, pp. 377-381Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M., (1997) J. Biol. Chem., 272, pp. 30615-3061

    Mitochondrial Energy Metabolism And Redox State In Dyslipidemias

    No full text
    Changes in mitochondrial function are intimately associated with metabolic diseases. Here, we review recent evidence relating alterations in mitochondrial energy metabolism, ion transport and redox state in hypercholesterolemia and hypertriglyceridemia. We focus mainly on changes in mitochondrial respiration, K+ and Ca2+ transport, reactive oxygen species generation and susceptibility to mitochondrial permeability transition. © 2007 IUBMB.5904/05/15263268Newmeyer, D.D., Ferguson-Miller, S., Mitochondria: Releasing power for life and unleashing the machineries of death (2003) Cell, 112, pp. 481-490Green, D.R., Kroemer, G., The pathophysiology of mitochondrial cell death (2004) Science, 305, pp. 626-629Orrenius, S., Gogvadze, V., Zhivotovsky, B., Mitochondrial oxidative stress: Implications for cell death (2006) Annu. Rev. Pharmacol. Toxicol, 47, pp. 143-183Vercesi, A.E., Kowaltowski, A.J., Oliveira, H.C., Castilho, R.F., Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: Implications in cardiotoxicity, neurodegeneration and dyslipidemias (2006) Front. Biosci, 11, pp. 2554-2564Turrens, J.F., Mitochondrial formation of reactive oxygen species (2003) J. Physiol, 552, pp. 335-344Korshunov, S.S., Skulachev, V.P., Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria (1997) FEBS Lett, 416, pp. 15-18Grijalba, M.T., Vercesi, A.E., Schreier, S., Ca 2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca 2+-stimulated generation of reactive oxygen species by the respiratory chain (1999) Biochemistry, 38, pp. 13279-13287Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett, 495, pp. 12-15Fagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants (1990) J. Biol. Chem, 265, pp. 19955-19960Crompton, M., The mitochondrial permeability transition pore and its role in cell death (1999) Biochem. J, 341, pp. 233-249Zoratti, M., Szabo, I., The mitochondrial permeability transition (1995) Biochim. Biophys. Acta, 1241, pp. 139-176Lehninger, A.L., Vercesi, A., Bababunmi, E.A., Regulation of Ca2+ release from mitochondria by the oxidationreduction state of pyridine nucleotides (1978) Proc. Natl. Acad. Sci. USA, 75, pp. 1690-1694Kim, J.S., He, L., Lemasters, J.J., Mitochondrial permeability transition: A common pathway to necrosis and apoptosis (2003) Biochem. Biophys. Res. Commun, 304, pp. 463-470Brown, M.S., Goldstein, J.L., A receptor-mediated pathway for cholesterol homeostasis (1986) Science, 232, pp. 34-47Stokes III, J., Kannel, W.B., Wolf, P.A., Cupples, L.A., D'Agostino, R.B., The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham Study (1987) Circulation, 75, pp. V65-V73Chisolm, G.M., Steinberg, D., The oxidative modification hypothesis of atherogenesis: An overview (2000) Free Radic. Biol. Med, 28, pp. 1815-1826Witztum, J.L., Steinberg, D., Role of oxidized low density lipoprotein in atherogenesis (1991) J. Clin. Invest, 88, pp. 1785-1792Morel, D.W., DiCorleto, P.E., Chisolm, G.M., Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation (1984) Arteriosclerosis, 4, pp. 357-364Lamb, D.J., Wilkins, G.M., Leake, D.S., The oxidative modification of low density lipoprotein by human lymphocytes (1992) Atherosclerosis, 92, pp. 187-192Oliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Velho, J.A., Vercesi, A.E., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J, 19, pp. 278-280Gaylor, J.L., Membrane-bound enzymes of cholesterol synthesis from lanosterol (2002) Biochem. Biophys. Res. Commun, 292, pp. 1139-1146Zmijewski, J.W., Moellering, D.R., Le Goffe, C., Landar, A., Ramachandran, A., Darley-Usmar, V.M., Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells (2005) Am. J. Physiol. Heart Circ. Physiol, 289, pp. H852-H861Vindis, C., Elbaz, M., Escargueil-Blanc, I., Auge, N., Heniquez, A., Thiers, J.C., Negre-Salvayre, A., Salvayre, R., Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis (2005) Arterioscler. Thromb. Vasc. Biol, 25, pp. 639-645Jo, S.H., Son, M.K., Koh, H.J., Lee, S.M., Song, I.H., Kim, Y.O., Lee, Y.S., Huh, T.L., Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase (2001) J. Biol. Chem, 276, pp. 16168-16176Koh, H.J., Lee, S.M., Son, B.G., Lee, S.H., Ryoo, Z.Y., Chang, K.T., Park, J.W., Huh, T.L., Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism (2004) J. Biol. Chem, 279, pp. 39968-39974Hoek, J.B., Rydstrom, J., Physiological roles of nicotinamide nucleotide transhydrogenase (1988) Biochem. J, 254, pp. 1-10Velho, J.A., Okanobo, H., Degasperi, G.R., Matsumoto, M.Y., Alberici, L.C., Cosso, R.G., Oliveira, H.C., Vercesi, A.E., Statins induce calcium-dependent mitochondrial permeability transition (2006) Toxicology, 219, pp. 124-132Kaneta, S., Satoh, K., Kano, S., Kanda, M., Ichihara, K., All hydrophobic HMG-CoA reductase inhibitors induce apoptotic death in rat pulmonary vein endothelial cells (2003) Atherosclerosis, 170, pp. 237-243Kubota, T., Fujisaki, K., Itoh, Y., Yano, T., Sendo, T., Oishi, R., Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors (2004) Biochem. Pharmacol, 67, pp. 2175-2186Clark, L.T., Treating dyslipidemia with statins: The risk-benefit profile (2003) Am. Heart J, 145, pp. 387-396Assmann, G., Brewer Jr., H.B., Genetic (primary) forms of hypertriglyceridemia (1991) Am. J. Cardiol, 68, pp. 13A-16AMancini, M., Steiner, G., Betteridge, D.J., Pometta, D., Acquired (secondary) forms of hypertriglyceridemia (1991) Am. J. Cardiol, 68, pp. 17A-21AMalloy, M.J., Kane, J.P., A risk factor for atherosclerosis: Triglyceride-rich lipoproteins (2001) Adv. Intern. Med, 47, pp. 111-136Walsh, A., Azrolan, N., Wang, K., Marcigliano, A., O'Connell, A., Breslow, J.L., Intestinal expression of the human apoA-I gene in transgenic mice is controlled by a DNA region 3′ to the gene in the promoter of the adjacent convergently transcribed apoC-III gene (1993) J. Lipid Res, 34, pp. 617-623Aalto-Setala, K., Weinstock, P.H., Bisgaier, C.L., Wu, L., Smith, J.D., Breslow, J.L., Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apoC-III transgenic mice (1996) J. Lipid. Res, 37, pp. 1802-1811Amaral, M.E., Oliveira, H.C., Carneiro, E.M., Delghingaro-Augusto, V., Vieira, E.C., Berti, J.A., Boschero, A.C., Plasma glucose regulation and insulin secretion in hypertriglyceridemic mice (2002) Horm. Metab. Res, 34, pp. 21-26Alberici, L.C., Oliveira, H.C., Bighetti, E.J., de Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J. Bioenerg. Biomembr, 35, pp. 451-457Catisti, R., Vercesi, A.E., The participation of pyridine nucleotides redox state and reactive oxygen in the fatty acid-induced permeability transition in rat liver mitochondria (1999) FEBS Lett, 464, pp. 97-101Brand, M.D., Esteves, T.C., Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3 (2005) Cell Metab, 2, pp. 85-93Bao, S., Kennedy, A., Wojciechowski, B., Wallace, P., Ganaway, E., Garvey, W.T., Expression of mRNAs encoding uncoupling proteins in human skeletal muscle: Effects of obesity and diabetes (1998) Diabetes, 47, pp. 1935-1940Hidaka, S., Yoshimatsu, H., Kakuma, T., Sakino, H., Kondou, S., Hanada, R., Oka, K., Sakata, T., Tissue-specific expression of the uncoupling protein family in streptozotocin-induced diabetic rats (2000) Proc. Soc. Exp. Biol. Med, 224, pp. 172-177Gong, D.W., He, Y., Karas, M., Reitman, M., Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin (1997) J. Biol. Chem, 272, pp. 24129-24132Samec, S., Seydoux, J., Dulloo, A.G., Post-starvation gene expression of skeletal muscle uncoupling protein 2 and uncoupling protein 3 in response to dietary fat levels and fatty acid composition: A link with insulin resistance (1999) Diabetes, 48, pp. 436-441Nisoli, E., Carruba, M.O., Tonello, C., Macor, C., Federspil, G., Vettor, R., Induction of fatty acid translocase/CD36, peroxisome proliferator-activated receptor-gamma2, leptin, uncoupling proteins 2 and 3, and tumor necrosis factor-alpha gene expression in human subcutaneous fat by lipid infusion (2000) Diabetes, 49, pp. 319-324Garlid, K.D., Paucek, P., Mitochondrial potassium transport: The K+ cycle (2003) Biochim. Biophys. Acta, 1606, pp. 23-41Facundo, H.T., Fornazari, M., Kowaltowski, A.J., Tissue protection mediated by mitochondrial K+ channels (2006) Biochim. Biophys. Acta, 1762, pp. 202-212Alberici, L.C., Oliveira, H.C., Patricio, P.R., Kowaltowski, A.J., Vercesi, A.E., Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+ channel activity (2006) Gastroenterology, 131, pp. 1228-1234Rothwell, N.J., Stock, M.J., Energy expenditure of 'cafeteria'-fed rats determined from measurements of energy balance and indirect calorimetry (1982) J. Physiol, 328, pp. 371-377Rothwell, N.J., Stock, M.J., A role for brown adipose tissue in diet-induced thermogenesis (1979) Nature, 281, pp. 31-35St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain (2002) J. Biol. Chem, 277, pp. 44784-44790Zhang, D.X., Chen, Y.F., Campbell, W.B., Zou, A.P., Gross, G.J., Li, P.L., Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels (2001) Circ. Res, 89, pp. 1177-1183Facundo, H. T. F., de Paula, J. G., and Kowaltowski, A. J. (2007). Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic. Biol. Med. doi 10.1016/jfreeradbiomed.2007.01.001Ferranti, R., da Silva, M.M., Kowaltowski, A.J., Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation (2003) FEBS Lett, 536, pp. 51-5

    Oxidative Damage Of Mitochondria Induced By Fe(ii)citrate Or T-butyl Hydroperoxide In The Presence Of Ca2+: Effect Of Coenzyme Q Redox State

    No full text
    The role of coenzyme Q on the process of mitochondrial membrane damage associated with oxidative stress was studied in a suspension of uncoupled mitochondria exposed to Ca2+ in the presence of Fe(II)citrate or t-butyl hydroperoxide. Reduction of coenzyme Q by succinate was shown to inhibit both inner membrane lipid peroxidation and permeabilization induced by Fe(II)citrate. In contrast, the inner membrane permeabilization induced by Ca2+ alone or Ca2+ plus t-butyl hydroperoxide was potentiated by the presence of succinate. These results support our previous proposition that the mitochondrial damage associated with oxidative stress generated by these prooxidants in the presence of Ca2+ is mediated by different mechanisms. © 1994.1815559Boveris, Oshino, Chance, The cellular production of hydrogen peroxide (1972) Biochem. J., 128, pp. 617-630Reed, Review of the current status of calcium and thiols in cell injury (1990) Chemical Research in Toxicology, 5, pp. 495-502Vercesi, Hoffmann, Generation of reactive oxygen metabolites and oxidative damage in mitochondria: The role of calcium (1993) Methods in toxicology: “Mitochondrial Dysfunction”, 2, pp. 256-265. , D.P. Jones, L.H. Lash, Academic Press, New YorkCadenas, Boveris, Ragan, Stoppani, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria (1977) Arch. Biochem. Biophys., 180, pp. 248-257Beyer, The participation of coenzyme Q in free radical production and antioxidation (1990) Free Radic. Biol. Med., 8, pp. 545-565Forsmark, Aberg, Norling, Nordenbrand, Dallner, Ernster, Inhibition of lipid peroxidation by ubiquinol in submitochondrial particles in the absence of Vitamine E (1991) FEBS Lett, 285, pp. 39-43Bindoli, Lipid peroxidation in mitochondria (1988) Free Radical Biology and Medicine, 5, pp. 247-261Gunter, Pfeiffer, Mechanisms by which mitochondria transport calcium (1990) Am. J. Physiol., 258, pp. C755-C786Lehninger, Vercesi, Bababunmi, Regulation of Ca2+ release from mitochondria by the oxidation reduction state of pyridine nucleotides (1978) Proc. Natl. Acad. Sci. USA, 75, pp. 1690-1694Crompton, Ellinger, Costi, Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress (1988) Biochem. J., 255, pp. 357-360Fagian, Pereira-da-Silva, Martins, Vercesi, Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants (1990) J. Biol. Chem., 265, pp. 19955-19960Valle, Fagian, Parentoni, Meinicke, Vercesi, The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants (1993) Arch. Biochem. Biophys., 307, pp. 1-7Szabo, Zoratti, The mitochondrial megachannel is the permeability transition pore (1992) Journal of Bioenergetics and Biomembranes, 24, pp. 111-117Castilho, Meinicke, Almeida, Hermes-Lima, Vercesi, Oxidative damage of mitochondria induced by Fe(II)citrate is potentiated by Ca2+ and includes lipid peroxidation and alterations in membrane proteins (1994) Arch. Biochem. Biophys., 308, pp. 158-163Pedersen, Greenalwalt, Reynafarje, Hullihen, Decker, Soper, Bustamante, Preparation and characterization of mitochondria and liver derived tissue (1978) Methods in Cell Biol., 20, pp. 411-481Boveris, Cadenas, Stoppani, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide (1976) Biochem. J., 156, pp. 435-444Buege, Aust, Microsomal lipid peroxidation (1978) Methods in enzymology, 52, pp. 302-310. , S. Fleisher, L. Packer, Academic Press, New YorkHalliwell, Gutteridge, Lipid peroxidation: A radical chain reaction (1989) Free radicals in biology and medicine, pp. 234-260. , B. Halliwell, J.M.C. Gutteridge, Clarendon Press, OxfordErdahl, Krebsbach, Pfeiffer, A comparison of phospholipid degradation by oxidation and hydrolysis during the mitochondrial permeability transition (1991) Arch. Biochem. Biophys., 285, pp. 252-260Beyer, Nordenbrand, Ernster, The function of coenzyme Q in free radical production and as an antioxidant: A review (1987) Chem. Scripta, 27, pp. 145-153Svingen, Buege, O'Neal, Aust, The mechanism of NADPH-dependent lipid peroxidation: The propagation of lipid peroxidation (1979) J. Biol. Chem., 254, pp. 5892-5899Cadenas, Boveris, Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria (1980) Biochem. J., 188, pp. 31-37Stadtman, Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions (1993) Annu. Rev. Biochem., 62, pp. 797-82
    corecore