1,257 research outputs found
Unconditionally secure quantum key distribution over 50km of standard telecom fibre
We demonstrate a weak pulse quantum key distribution system using the BB84
protocol which is secure against all individual attacks, including photon
number splitting. By carefully controlling the weak pulse intensity we
demonstrate the maximum secure bit rate as a function of the fibre length.
Unconditionally secure keys can be formed for standard telecom fibres exceeding
50 km in length.Comment: 9 pages 2 figure
Tungsten Behavior at High Temperature and High Stress
Recently reported results on the tungsten lifetime/fatigue tests under conditions expected in the Neutrino Factory target have strengthened the case of solid target option for a Neutrino Factory. This paper gives description of the detailed measurements of the tungsten properties at high temperature and high stress. We have performed extensive set of measurements of the surface displacement and velocity of the tungsten wires that were stressed by passing a fast, high current pulse through a thin sample. Radial and longitudinal oscillations of the wire were measured by a Laser Doppler Vibrometer. The wire was operated at temperatures of 300-2500 K by adjusting the pulse repetition rate. In doing so we have tried to simulate the conditions (high stress and temperature) expected at the Neutrino Factory. Most important result of this study is an experimental confirmation that strength of tungsten remains high at high temperature and high stress. The experimental results have been found to agree very well with LS-DYNA modelling results
Stabilizer notation for Spekkens' toy theory
Spekkens has introduced a toy theory [Phys. Rev. A, 75, 032110 (2007)] in
order to argue for an epistemic view of quantum states. I describe a notation
for the theory (excluding certain joint measurements) which makes its
similarities and differences with the quantum mechanics of stabilizer states
clear. Given an application of the qubit stabilizer formalism, it is often
entirely straightforward to construct an analogous application of the notation
to the toy theory. This assists calculations within the toy theory, for example
of the number of possible states and transformations, and enables
superpositions to be defined for composite systems.Comment: 7+4 pages, 5 tables. v2: Clarifications added and typos fixed in
response to referee comment
Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot
Integrated quantum light sources in photonic circuits are envisaged as the building blocks of future on-chip architectures for quantum logic operations. While semiconductor quantum dots have been proven to be the highly efficient emitters of quantum light, their interaction with the host material induces spectral decoherence, which decreases the indistinguishability of the emitted photons and limits their functionality. Here, we show that the indistinguishability of in-plane photons can be greatly enhanced by performing resonance fluorescence on a quantum dot coupled to a photonic crystal waveguide. We find that the resonant optical excitation of an exciton state induces an increase in the emitted single-photon coherence by a factor of 15. Two-photon interference experiments reveal a visibility of 0.80 ± 0.03, which is in good agreement with our theoretical model. Combined with the high in-plane light-injection efficiency of photonic crystal waveguides, our results pave the way for the use of this system for the on-chip generation and transmission of highly indistinguishable photons
Genetic differentiation in Scottish populations of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae)
Pine beauty moth, Panolis flammea (Denis & Schiffermüller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.A.J. Lowe, B.J. Hicks, K. Worley, R.A. Ennos, J.D. Morman, G. Stone and A.D. Wat
Generation of entangled states and error protection from adiabatic avoided level crossings
We consider the environment-affected dynamics of self-interacting
particles living in one-dimensional double wells. Two topics are dealt with.
First, we consider the production of entangled states of two-level systems. We
show that by adiabatically varying the well biases we may dynamically generate
maximally entangled states, starting from initially unentangled product states.
Entanglement degradation due to a common type of environmental influence is
then computed by solving a master equation. However, we also demonstrate that
entanglement production is unaffected if the system-environment coupling is of
the type that induces ``motional narrowing''. As our second but related topic,
we construct a different master equation that seamlessly merges error
protection/detection dynamics for quantum information with the environmental
couplings responsible for producing the errors in the first place. Adiabatic
avoided crossing schemes are used in both topics.Comment: 14 pages, 6 figures. Minor changes. To appear in Phys. Rev.
Controlled order rearrangement encryption for quantum key distribution
A novel technique is devised to perform orthogonal state quantum key
distribution. In this scheme, entangled parts of a quantum information carrier
are sent from Alice to Bob through two quantum channels. However before the
transmission, the orders of the quantum information carrier in one channel is
reordered so that Eve can not steal useful information. At the receiver's end,
the order of the quantum information carrier is restored. The order
rearrangement operation in both parties is controlled by a prior shared control
key which is used repeatedly in a quantum key distribution session.Comment: 5 pages and 2 figure
Phylogenetic relationships within Orobanche and Phelipanche (Orobanchaceae) from Central Europe, focused on problematic aggregates, taxonomy, and host ranges
Holoparasitic genera within the family Orobanchaceae are characterized by greatly reduced vegetative organs;
therefore, molecular analysis has proved to be a useful tool in solving taxonomic problems in this family. For
this purpose, we studied all species of the genera
Orobanche
and
Phelipanche
occurring in Central Europe,
specifically in Poland, the Czech Republic, Slovakia, and Austria, supplemented by samples mainly from Spain,
France, Germany, and Ukraine. They were investigated using nuclear sequences (ITS region) and a plastid
trnL-
trnF
region. The aim of this study was to examine phylogenetic relationships within
Orobanche
and
Phelipanche
from Central Europe; we focused on problematic species and aggregates, recent taxonomic changes in these
(rank and secondary ranks), and host ranges. The most interesting results concern the exlusion of
O. mayeri
from
O. alsatica
aggr. Additionally, following the rules of traditional taxonomy, the correct names and types of
some secondary ranks are given and, as a result of this, a new combination below the
Phelipanche
genus is made
(
P
.
sect.
Trionychon
). The host ranges of the investigated species in Central Europe include 102 species from 12
families, most often from Asteraceae. For this purpose, ca. 400 localities were examined in the field. Moreover,
data acquired from the literature and European and Asian herbaria were use
Entanglement between a qubit and the environment in the spin-boson model
The quantitative description of the quantum entanglement between a qubit and
its environment is considered. Specifically, for the ground state of the
spin-boson model, the entropy of entanglement of the spin is calculated as a
function of , the strength of the ohmic coupling to the environment,
and , the level asymmetry. This is done by a numerical
renormalization group treatment of the related anisotropic Kondo model. For
, the entanglement increases monotonically with , until it
becomes maximal for . For fixed , the entanglement
is a maximum as a function of for a value, .Comment: 4 pages, 3 figures. Shortened version restricted to groundstate
entanglemen
Robustness of Decoherence-Free Subspaces for Quantum Computation
It was shown recently [D.A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)]
that within the framework of the semigroup Markovian master equation,
decoherence-free (DF) subspaces exist which are stable to first order in time
to a perturbation. Here this result is extended to the non-Markovian regime and
generalized. In particular, it is shown that within both the semigroup and the
non-Markovian operator sum representation, DF subspaces are stable to all
orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal
for quantum memory applications. For quantum computation, however, the
stability result does not extend beyond the first order. Thus, to perform
robust quantum computation in DF subspaces, they must be supplemented with
quantum error correcting codes.Comment: 16 pages, no figures. Several changes, including a clarification of
the derivation of the Lindblad equation from the operator sum representation.
To appear in Phys. Rev
- …