346 research outputs found

    Stability of homogeneous magnetic phases in a generalized t-J model

    Full text link
    We study the stability of homogeneous magnetic phases in a generalized t-J model including a same-sublattice hopping t' and nearest-neighbor repulsion V by means of the slave fermion-Schwinger boson representation of spin operators. At mean-field order we find, in agreement with other authors, that the inclusion of further-neighbor hopping and Coulomb repulsion makes the compressibility positive, thereby stabilizing at this level the spiral and Neel orders against phase separation. However, the consideration of Gaussian fluctuation of order parameters around these mean-field solutions produces unstable modes in the dynamical matrix for all relevant parameter values, leaving only reduced stability regions for the Neel phase. We have computed the one-loop corrections to the energy in these regions, and have also briefly considered the effects of the correlated hopping term that is obtained in the reduction from the Hubbard to the t-J model.Comment: 5 pages, 5 figures, Revte

    Atomic Model of Susy Hubbard Operators

    Full text link
    We apply the recently proposed susy Hubbard operators to an atomic model. In the limiting case of free spins, we derive exact results for the entropy which are compared with a mean field + gaussian corrections description. We show how these results can be extended to the case of charge fluctuations and calculate exact results for the partition function, free energy and heat capacity of an atomic model for some simple examples. Wavefunctions of possible states are listed. We compare the accuracy of large N expansions of the susy spin operators with those obtained using `Schwinger bosons' and `Abrikosov pseudo-fermions'. For the atomic model, we compare results of slave boson, slave fermion, and susy Hubbard operator approximations in the physically interesting but uncontrolled limiting case of N->2. For a mixed representation of spins we estimate the accuracy of large N expansions of the atomic model. In the single box limit, we find that the lowest energy saddle-point solution reduces to simply either slave bosons or slave fermions, while for higher boxes this is not the case. The highest energy saddle-point solution has the interesting feature that it admits a small region of a mixed representation, which bears a superficial resemblance to that seen experimentally close to an antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision

    MeV-mass dark matter and primordial nucleosynthesis

    Full text link
    The annihilation of new dark matter candidates with masses mXm_X in the MeV range may account for the galactic positrons that are required to explain the 511 keV γ\gamma-ray flux from the galactic bulge. We study the impact of MeV-mass thermal relic particles on the primordial synthesis of 2^2H, 4^4He, and 7^7Li. If the new particles are in thermal equilibrium with neutrinos during the nucleosynthesis epoch they increase the helium mass fraction for m_X\alt 10 MeV and are thus disfavored. If they couple primarily to the electromagnetic plasma they can have the opposite effect of lowering both helium and deuterium. For mX=4m_X=4--10 MeV they can even improve the overall agreement between the predicted and observed 2^2H and 4^4He abundances.Comment: 11 pages, 10 figures, references and two appendices added, conclusions unchanged; accepted for publication in Phys.Rev.

    The d'-Dibaryon in the Nonrelativistic Quark Model

    Get PDF
    The narrow peak recently found in various pionic double charge exchange (DCX) cross sections can be explained by the assumption of a universal resonance at 2065 MeV, called d'. We calculate the mass of a six-quark system with J^P=0^-, T=0 quantum numbers employing a cluster model and a shell model basis to diagonalize the nonrelativistic quark model Hamiltonian.Comment: 7 pages, Latex, 2 figures, invited talk at 6th Int. Symp. on Mesons and Nucleons 1995, Blaubeuren, Germany, 10-14 July 1995, to be published in pi-N Newsletter

    Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model

    Full text link
    We study a one-dimensional system that consists of an electron gas coupled to a spin-1/2 chain by Kondo interaction away from half-filling. We show that zero-temperature transitions between phases with "small" and "large" Fermi momenta can be continuous. Such a continuous but Fermi-momentum-changing transition arises in the presence of spin anisotropy, from a Luttinger liquid with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum. We have also added a frustrating next-nearest-neighbor interaction in the spin chain to show the possibility of a similar Fermi-momentum-changing transition, between the Kondo phase and a spin-Peierls phase, in the spin isotropic case. This transition, however, appears to involve a region in which the two phases coexist.Comment: The updated version clarifies the definitions of small and large Fermi momenta, the role of anisotropy, and how Kondo interaction affects Luttinger liquid phase. 12 pages, 5 figure

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the tJt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-

    Full text link
    We calculate the magnetic susceptibility and g-factor of the isolated C_{60}^- ion at zero temperature, with a proper treatment of the dynamical Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises emerge. First, the predicted molecular spin-orbit splitting is two orders of magnitude smaller than in the bare carbon atom, due to the large radius of curvature of the molecule. Second, this reduced spin-orbit splitting is comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a field dependence of the g-factor is predicted. Third, the orbital gyromagnetic factor is strongly reduced by vibron coupling, and so therefore are the effective weak-field g-factors of all low-lying states. In particular, the ground-state doublet of C_{60}^- is predicted to show a negative g-factor of \sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include

    Frustration and the Kondo effect in heavy fermion materials

    Full text link
    The observation of a separation between the antiferromagnetic phase boundary and the small-large Fermi surface transition in recent experiments has led to the proposal that frustration is an important additional tuning parameter in the Kondo lattice model of heavy fermion materials. The introduction of a Kondo (K) and a frustration (Q) axis into the phase diagram permits us to discuss the physics of heavy fermion materials in a broader perspective. The current experimental situation is analysed in the context of this combined "QK" phase diagram. We discuss various theoretical models for the frustrated Kondo lattice, using general arguments to characterize the nature of the ff-electron localization transition that occurs between the spin liquid and heavy Fermi liquid ground-states. We concentrate in particular on the Shastry--Sutherland Kondo lattice model, for which we establish the qualitative phase diagram using strong coupling arguments and the large-NN expansion. The paper closes with some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT

    Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

    Full text link
    The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum phi^4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magnetic field on the ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-temperature properties are considered with the use of the scaling analysis for the effective classical model proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of dependences of observable quantities on the bare splitting (or magnetic field) and renormalized splitting turn out to be different. A comparison with numerical calculations and experimental data on systems demonstrating magnetic and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit
    corecore