214 research outputs found
Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization
We calculate the dc Josephson current for two types of
superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first
type is a S/F/S junction. On the basis of the Eilenberger equation, the
Josephson current is calculated for an arbitrary impurity concentration. If the expression for the Josephson critical current is reduced
to that which can be obtained from the Usadel equation ( is the exchange
energy, is the momentum relaxation time). In the opposite limit
the superconducting condensate oscillates with period and
penetrates into the F region over distances of the order of the mean free path
. For this kind of junctions we also calculate in the case when the F
layer presents a nonhomogeneous (spiral) magnetic structure with the period
. It is shown that for not too low temperatures, the -state which
occurs in the case of a homogeneous magnetization (Q=0) may disappear even at
small values of . In this nonhomogeneous case, the superconducting
condensate has a nonzero triplet component and can penetrate into the F layer
over a long distance of the order of . The junction
of the second type consists of two S/F bilayers separated by a thin insulating
film. It is shown that the critical Josephson current depends on the
relative orientation of the effective exchange field of the bilayers. In
the case of an antiparallel orientation, increases with increasing .
We establish also that in the F film deposited on a superconductor, the
Meissner current created by the internal magnetic field may be both diamagnetic
or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.
Особенности рекреационного потенциала лесных биогеоценозов Клинско-Дмитровской гряды
The article is devoted to recreational opportunities of forest ecosystems of Clinsko-Dmytrovskaja Grjada. Recreational potential in connection of forest types was given as result of male study. As a result of studies is assessed the recreational potential in relation to forest types. The impact of various forms of rechation on the state of the main elements of the forest has been given. The description of flora and fauna have been given.Статья посвящена выявлению рекреационных возможностей лесных биогеоценозов Клинско-Дмитровской гряды. В результате проведенных исследований была дана оценка рекреационного потенциала в связи с типами леса. Выявлено воздействие различных форм рекреации на состояние основных элементов леса. Приведено описание флоры и фауны объекта исследования
Giant thermoemf in multiterminal superconductor/normal metal mesoscopic structures
We considered a mesoscopic superconductor/normal metal (S/N) structure in
which the N reservoirs are maintained at different temperatures. It is shown
that in the absence of current between the N reservoirs a voltage difference
arises between the superconducting and normal conductors. The voltage
oscillates with increasing phase difference between the
superconductors, and its magnitude does not depend on the small parameter
Comment: Resubmited, some changes to Text and Figure
Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers
We study non-equilibrium Josephson effect and phase-dependent conductance in
three-terminal diffusive interferometers with short arms. We consider strong
proximity effect and investigate an interplay of dissipative and Josephson
currents co-existing within the same proximity region. In junctions with
transparent interfaces, the suppression of the Josephson current appears at
rather large voltage, , and the current vanishes at
. Josephson current inversion becomes possible in junctions with
resistive interfaces, where the inversion occurs within a finite interval of
the applied voltage. Due to the presence of considerably large and
phase-dependent injection current, the critical current measured in a current
biased junction does not coincide with the maximum Josephson current, and
remains finite when the true Josephson current is suppressed. The voltage
dependence of the conductance shows two pronounced peaks, at the bulk gap
energy, and at the proximity gap energy; the phase oscillation of the
conductance exhibits qualitatively different form at small voltage ,
and at large voltage .Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.
Local density of states in superconductor-strong ferromagnet structures
We study the dependence of the local density of states (LDOS) on coordinates
for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming
that the exchange energy h in the ferromagnet is sufficiently large: where is the elastic relaxation time. This limit cannot be
described by the Usadel equation and we solve the more general Eilenberger
equation. We demonstrate that, in the main approximation in the parameter , the proximity effect does not lead to a modification of the LDOS
in the S/F system and a non-trivial dependence on coordinates shows up in next
orders in In the S/F/S sandwich the correction to the LDOS is
nonzero in the main approximation and depends on the phase difference between
the superconductors. We also calculate the superconducting critical temperature
for the bilayered system and show that it does not depend on the
exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure
Synthesis of Mn2+-doped CdS nanoparticles covered with different adsorptive layers and their application as biosensors
Colloidal CdS:Mn nanoparticles were synthesized in water solutions of the
polymer polyvinyl-pyrrolidone (PVP), the surfactant cetyl-trimethyl-ammonium bromide
(CTAB) and the mixture of PVP and CTAB. The sizes of nanoparticles were determined
by electron microscopy and optical absorption methods. The growth media influence on
photoluminescence of nanoparticles has been studied. It has been shown that the
chemical composition and structure of the adsorptive layer on the surface of
nanoparticles can be used as a technological tool to control their light emission. The
possibility to use CdS:Mn NPs grown in PVP as light-emitting labels in biological media
has been demonstrated
Coherent Charge Transport in Metallic Proximity Structures
We develop a detailed microscopic analysis of electron transport in normal
diffusive conductors in the presence of proximity induced superconducting
correlation. We calculated the linear conductance of the system, the profile of
the electric field and the densities of states. In the case of transparent
metallic boundaries the temperature dependent conductance has a non-monotoneous
``reentrant'' structure. We argue that this behavior is due to nonequilibrium
effects occuring in the normal metal in the presence of both superconducting
correlations and the electric field there. Low transparent tunnel barriers
suppress the nonequilibrium effects and destroy the reentrant behavior of the
conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm
oscillations with the period as a function of the magnetic flux
inside the loop. The amplitude of these oscillations also demonstrates
the reentrant behavior vanishing at and decaying as at relatively
large temperatures. The latter behavior is due to low energy correlated
electrons which penetrate deep into the normal metal and ``feel'' the effect of
the magnetic flux . We point out that the density of states and thus the
``strengh'' of the proximity effect can be tuned by the value of the flux
inside the loop. Our results are fully consistent with recent experimental
findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.
- …