9 research outputs found

    Spin Transistor and Quantum Spin Hall Effects in CdBxF2-x - p-CdF2 - CdBxF2-x Sandwich Nanostructures

    Full text link
    Planar CdBxF2-x - p-CdF2 - CdBxF2-x sandwich nanostructures prepared on the surface of the n-type CdF2 bulk crystal are studied to register the spin transistor and quantum spin Hall effects. The current-voltage characteristics of the ultra-shallow p+-n junctions verify the CdF2 gap, 7.8 eV, and the quantum subbands of the 2D holes in the p-type CdF2 quantum well confined by the CdBxF2-x delta-barriers. The temperature and magnetic field dependencies of the resistance, specific heat and magnetic susceptibility demonstrate the high temperature superconductor properties for the CdBxF2-x delta-barriers. The value of the superconductor energy gap, 102.06 meV, determined by the tunneling spectroscopy method appears to be in a good agreement with the relationship between the zero-resistance supercurrent in superconductor state and the conductance in normal state at the energies of the 2D hole subbands. The results obtained are evidence of the important role of the multiple Andreev reflections in the creation of the high spin polarization of the 2D holes in the edged channels of the sandwich device. The high spin hole polarization in the edged channels is shown to identify the mechanism of the spin transistor and quantum spin Hall effects induced by varying the top gate voltage, which is revealed by the first observation of the Hall quantum conductance staircase.Comment: 5 pages, 9 figure

    Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum

    Get PDF
    Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe2 to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector, in combination with effective reduction of the excitonic disorder through motional narrowing, results in small polariton linewidths below 3 meV. Together with a strongly wavevector-dependent Q-factor, this provides for the enhancement and control of polariton–polariton interactions and the resulting nonlinear optical effects, paving the way toward tuneable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics

    Valley polarization of trions in monolayer MoSe2 interfaced with bismuth iron garnet

    Get PDF
    Interfacing atomically thin van der Waals semiconductors with magnetic substrates enables additional control on their intrinsic valley degree of freedom and provides a promising platform for the development of novel valleytronic devices for information processing and storage. Here we study circularly polarized photoluminescence in heterostructures of monolayer MoSe2 and thin films of ferrimagnetic bismuth iron garnet (BIG). We observe strong emission from charged excitons with circular polarization opposite to that of the pump and demonstrate contrasting response to left and right circularly polarized excitation, associated with finite out-of-plane magnetization in the substrate. We propose a theoretical model accounting for magnetization-induced imbalance of charge carriers in the two valleys of MoSe2, as well as for valley-switching scattering from B to A excitons and fast formation of trions with extended valley relaxation times, which shows excellent agreement with the experimental data. Our results establish monolayer MoSe2 interfaced with BIG as a promising system for valley control of charged excitons
    corecore