16 research outputs found

    Determination of the parameters of semiconducting CdF2:In with Schottky barriers from radio-frequency measurements

    Full text link
    Physical properties of semiconducting CdF_2 crystals doped with In are determined from measurements of the radio-frequency response of a sample with Schottky barriers at frequencies 10 - 10^6 Hz. The dc conductivity, the activation energy of the amphoteric impurity, and the total concentration of the active In ions in CdF_2 are found through an equivalent-circuit analysis of the frequency dependencies of the sample complex impedance at temperatures from 20 K to 300 K. Kinetic coefficients determining the thermally induced transitions between the deep and the shallow states of the In impurity and the barrier height between these states are obtained from the time-dependent radio-frequency response after illumination of the material. The results on the low-frequency conductivity in CdF_2:In are compared with submillimeter (10^{11} - 10^{12} Hz) measurements and with room-temperature infrared measurements of undoped CdF_2. The low-frequency impedance measurements of semiconductor samples with Schottky barriers are shown to be a good tool for investigation of the physical properties of semiconductors.Comment: 9 pages, 7 figure

    How to Measure Chromo-magnetic Vacuum Background Field in e+e−→jetse^{+}e^{-}\to jets, Hadron-Hadron and Nucleus-Nucleus Collisions

    Get PDF
    We propose a new type of the measurement which is sensitive to the QCD vacuum color-magnetic fluctuations: A measure of the axial assymetry of the hadronic final states produced in the high energy e+e−e^{+}e^{-} collisions is related to the chromomagnetic vacuum field strength.Comment: 11 pages,latex,no figures,replaced,final version which takes into account criticisms of referees of Phys.Rev. Title of the paper was changed. The formula (14) was corrected, notation in formulae (12) and (13) changed. Also we added forgotten vectorial notations,corrected misspellings and improved the style and gramma

    Spin Transistor and Quantum Spin Hall Effects in CdBxF2-x - p-CdF2 - CdBxF2-x Sandwich Nanostructures

    Full text link
    Planar CdBxF2-x - p-CdF2 - CdBxF2-x sandwich nanostructures prepared on the surface of the n-type CdF2 bulk crystal are studied to register the spin transistor and quantum spin Hall effects. The current-voltage characteristics of the ultra-shallow p+-n junctions verify the CdF2 gap, 7.8 eV, and the quantum subbands of the 2D holes in the p-type CdF2 quantum well confined by the CdBxF2-x delta-barriers. The temperature and magnetic field dependencies of the resistance, specific heat and magnetic susceptibility demonstrate the high temperature superconductor properties for the CdBxF2-x delta-barriers. The value of the superconductor energy gap, 102.06 meV, determined by the tunneling spectroscopy method appears to be in a good agreement with the relationship between the zero-resistance supercurrent in superconductor state and the conductance in normal state at the energies of the 2D hole subbands. The results obtained are evidence of the important role of the multiple Andreev reflections in the creation of the high spin polarization of the 2D holes in the edged channels of the sandwich device. The high spin hole polarization in the edged channels is shown to identify the mechanism of the spin transistor and quantum spin Hall effects induced by varying the top gate voltage, which is revealed by the first observation of the Hall quantum conductance staircase.Comment: 5 pages, 9 figure

    Elastic and quasi-elastic pppp and γ⋆p\gamma^\star p scattering in the Dipole Model

    Full text link
    We have in earlier papers presented an extension of Mueller's dipole cascade model, which includes sub-leading effects from energy conservation and running coupling as well as colour suppressed saturation effects from pomeron loops via a ``dipole swing''. The model was applied to describe the total and diffractive cross sections in pppp and γ∗p\gamma^*p collisions, and also the elastic cross section in pppp scattering. In this paper we extend the model to describe the corresponding quasi-elastic cross sections in γ∗p\gamma^*p, namely the exclusive production of vector mesons and deeply virtual compton scattering. Also for these reactions we find a good agrement with measured cross sections. In addition we obtain a reasonable description of the tt-dependence of the elastic pppp and quasi-elastic γ⋆p\gamma^\star p cross sections

    Decomposition of the QCD String into Dipoles and Unintegrated Gluon Distributions

    Get PDF
    We present the perturbative and non-perturbative QCD structure of the dipole-dipole scattering amplitude in momentum space. The perturbative contribution is described by two-gluon exchange and the non-perturbative contribution by the stochastic vacuum model which leads to confinement of the quark and antiquark in the dipole via a string of color fields. This QCD string gives important non-perturbative contributions to high-energy reactions. A new structure different from the perturbative dipole factors is found in the string-string scattering amplitude. The string can be represented as an integral over stringless dipoles with a given dipole number density. This decomposition of the QCD string into dipoles allows us to calculate the unintegrated gluon distribution of hadrons and photons from the dipole-hadron and dipole-photon cross section via kT-factorization.Comment: 43 pages, 14 figure

    Double spin asymmetry in exclusive rho^0 muoproduction at COMPASS

    Full text link
    The longitudinal double spin asymmetry A_1^rho for exclusive leptoproduction of rho^0 mesons, mu + N -> mu + N + rho, is studied using the COMPASS 2002 and 2003 data. The measured reaction is incoherent exclusive rho^0 production on polarised deuterons. The Q^2 and x dependence of A_1^rho is presented in a wide kinematical range: 3x10^-3 < Q^2 < 7 (GeV/c)^2 and 5x10^-5 < x < 0.05. The presented results are the first measurements of A_1^rho at small Q2 (Q2 < 0.1 (GeV/c)^2) and small x (x < 3x10^-3). The asymmetry is in general compatible with zero in the whole kinematical range.Comment: 6 Figures, 15 pages, version 2 with updated author list, technical latex problem fixe
    corecore