70 research outputs found

    Some extremal problems for Gaussian and Empirical random fields.

    Get PDF
    Some important problems of probability and statistics can be reduced to the evaluation of supremum of some homogeneous functional defined on the Strasses ball in the space of smooth functions on the square. We give the solution of this extremal problem in two particular cases: when the functional is linear and continuous and when it is a superposition of two seminorms. As a result we obtain the rough large deviation asymptotic for Lp-norms of Brownian fields on the square, some Strassen type laws of iterated logarithm for functional of Brownian fields, and describe the conditions of local Bahadur optimality for some nonparametric independence tests such as generalized rank correlation coefficients.Brownian field; Strassen ball; large deviations; tail asymptotics; rank correlations

    Casimir elements from the Brauer-Schur-Weyl duality

    Full text link
    We consider Casimir elements for the orthogonal and symplectic Lie algebras constructed with the use of the Brauer algebra. We calculate the images of these elements under the Harish-Chandra isomorphism and thus show that they (together with the Pfaffian-type element in the even orthogonal case) are algebraically independent generators of the centers of the corresponding universal enveloping algebras.Comment: 19 page

    Characteristic maps for the Brauer algebra

    Full text link
    The classical characteristic map associates symmetric functions to characters of the symmetric groups. There are two natural analogues of this map involving the Brauer algebra. The first of them relies on the action of the orthogonal or symplectic group on a space of tensors, while the second is provided by the action of this group on the symmetric algebra of the corresponding Lie algebra. We consider the second characteristic map both in the orthogonal and symplectic case, and calculate the images of central idempotents of the Brauer algebra in terms of the Schur polynomials. The calculation is based on the Okounkov--Olshanski binomial formula for the classical Lie groups. We also reproduce the hook dimension formulas for representations of the classical groups by deriving them from the properties of the primitive idempotents of the symmetric group and the Brauer algebra.Comment: 23 pages, minor changes made, a reference adde

    Full Counting Statistics of Charge Transfer in Coulomb Blockade Systems

    Full text link
    Full counting statistics (FCS) of charge transfer in mesoscopic systems has recently become a subject of significant interest, since it proves to reveal an important information about the system which can be hardly assessed by other means. While the previous research mostly addressed the FCS of non- interacting systems, the present paper deals with the FCS in the limit of strong interaction. In this Coulomb blockade limit the electron dynamics is known to be governed by a master equation. We develop a general scheme to evaluate the FCS in such case, this being the main result of the work presented. We illustrate the scheme, by applying it to concrete systems. For generic case of a single resonant level we establish the equivalence of scattering and master equation approach to FCS. Further we study a single Coulomb blockade island with two and three leads attached and compare the FCS in this case with our recent results concerning an open dot either with two and three terminals. We demonstrate that Coulomb interaction suppresses the relative probabilities of large current fluctuations.Comment: 17 pages, 16 figure

    Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers

    Full text link
    We study non-equilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative and Josephson currents co-existing within the same proximity region. In junctions with transparent interfaces, the suppression of the Josephson current appears at rather large voltage, eVΔeV\sim \Delta, and the current vanishes at eVΔeV\geq\Delta. Josephson current inversion becomes possible in junctions with resistive interfaces, where the inversion occurs within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent injection current, the critical current measured in a current biased junction does not coincide with the maximum Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence of the conductance shows two pronounced peaks, at the bulk gap energy, and at the proximity gap energy; the phase oscillation of the conductance exhibits qualitatively different form at small voltage eV<ΔeV<\Delta, and at large voltage eV>ΔeV>\Delta.Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.

    Coherent Charge Transport in Metallic Proximity Structures

    Full text link
    We develop a detailed microscopic analysis of electron transport in normal diffusive conductors in the presence of proximity induced superconducting correlation. We calculated the linear conductance of the system, the profile of the electric field and the densities of states. In the case of transparent metallic boundaries the temperature dependent conductance has a non-monotoneous ``reentrant'' structure. We argue that this behavior is due to nonequilibrium effects occuring in the normal metal in the presence of both superconducting correlations and the electric field there. Low transparent tunnel barriers suppress the nonequilibrium effects and destroy the reentrant behavior of the conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm oscillations with the period Φ0=h/2e\Phi_0=h/2e as a function of the magnetic flux Φ\Phi inside the loop. The amplitude of these oscillations also demonstrates the reentrant behavior vanishing at T=0T=0 and decaying as 1/T1/T at relatively large temperatures. The latter behavior is due to low energy correlated electrons which penetrate deep into the normal metal and ``feel'' the effect of the magnetic flux Φ\Phi. We point out that the density of states and thus the ``strengh'' of the proximity effect can be tuned by the value of the flux inside the loop. Our results are fully consistent with recent experimental findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.

    Weak Charge Quantization on Superconducting Islands

    Full text link
    We consider the Coulomb blockade on a superconductive quantum dot strongly coupled to a lead through a tunnelling barrier and/or normal diffusive metal. Andreev transport of the correlated pairs leads to quantum fluctuations of the charge on the dot. These fluctuations result in exponential renormalization of the effective charging energy. We employ two complimentary ways to approach the problem, leading to the coinciding results: the instanton and the functional RG treatment of the non-linear sigma model. We also derive the charging energy renormalization in terms of arbitrary transmission matrix of the multi-channel interface.Comment: 21 pages, 4 eps figures, RevTe

    Theory of Interaction Effects in N-S Junctions out of Equilibrium

    Full text link
    We consider a normal metal - superconductor (N-S) junction in the regime, when electrons in the normal metal are driven out of equilibrium. We show that the non-equilibrium fluctuations of the electron density in the N-layer cause the fluctuations of the phase of the order parameter in the S-layer. As a result, the density of states in the superconductor deviates from the BCS form, most notably the density of states in the gap becomes finite. This effect can be viewed as a result of the time reversal symmetry breaking due to the non-equilibrium, and can be described in terms of a low energy collective mode of the junction, which couples normal currents in N-layer and supercurrents. This mode is analogous to the Schmid-Sch\"{o}n mode. To interpret their measurements of the tunneling current, Pothier {\em et. al} [Phys. Rev. Lett. {\bf 79}, 3490 (1997)] had to assume that the energy relaxation rate in the normal metal is surprisingly high. The broadening of the BCS singularity of the density of states in the S-layer manifest itself similarly to the broadening of the distribution function. Mechanism suggested here can be a possible explanation of this experimental puzzle. We also propose an independent experiment to test our explanation.Comment: 16 pages, 2 .eps figure

    Superconducting proximity effect in clean ferromagnetic layers

    Full text link
    We investigate superconducting proximity effect in clean ferromagnetic layers with rough boundaries. The subgap density of states is formed by Andreev bound states at energies which depend on trajectory length and the ferromagnetic exchange field. At energies above the gap, the spectrum is governed by resonant scattering states. The resulting density of states, measurable by tunneling spectroscopy, exhibits a rich structure, which allows to connect the theoretical parameters from experiments.Comment: 11 pages, 5 figures (included

    Long-Range Coulomb Interaction and the Crossover between Quantum and Shot Noise in Diffusive Conductors

    Full text link
    Frequency-dependent nonequilibrium noise in quantum-coherent diffusive conductors is calculated with account taken of long-range Coulomb interaction. For long and narrow contacts with strong external screening the crossover between quantum and shot noise takes place at frequencies much smaller than the voltage drop across the contact. We also show that under certain frequency limitations, the semiclassical and quantum-coherent approaches to shot noise are mathematically equivalent.Comment: 13 pages, RevTex, 7 ps figures, more details of derivation give
    corecore