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Abstract

Some important problems of Probability and Statistics can be reduced to the

evaluation of supremum of some homogeneous functionals de�ned on the Strassen

ball in the space of smooth functions on the square. We give the solution of this

extremal problem when the functional is linear and continuous and when it is a

superposition of two seminorms. As a result we obtain the large deviation asymp-

totics for Lp-norms of Brownian �elds on the square, some Strassen type laws of

iterated logarithm for functionals of Brownian �elds, and describe the conditions

of local Bahadur optimality for some nonparametric independence tests like rank

correlation coeÆcients.
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1. Introduction

Some important problems of Probability and Statistics related to random �elds
on the unit square may be reduced to the same extremal problem.

Let U be the space of real functions u(x; y) on the unit square I2 having
generalized mixed derivative uxy(x; y) and satisfying a set of boundary conditions
including the condition

u(x; 0) = u(0; y) = 0 8x; y 2 [0; 1]: (1:1)

Consider in U the so-called Strassen ball S determined by inequality

Z 1

0

Z 1

0
u2xy(x; y)dxdy � 1: (1:2)

Let b(u) be a homogeneous functional of degree 2 de�ned on the space U . It is
required to �nd the value

� = supfb(u) ju 2 Sg (1:3)

and whenever possible to specify the extremal u on which this extremum is at-
tained.

We describe now three typical problems leading to such formulation.

A. Large deviations for functionals of Gaussian �elds. Let W (s; t) be the Brown-
ian sheet or the Wiener-Chentsov �eld that is centered Gaussian �eld with covari-
ance function

K(�s; �t) = min(s1; t1)min(s2; t2); si � 0; ti � 0; i = 1; 2;

where �s = (s1; s2); �t = (t1; t2), and let T (W ) be a continuous and homogeneous
functional of the �eldW . It follows from the large deviation principle for Gaussian
�elds ( see [ 1 ], xx10; 12 ) and Varadhan's contraction principle [ 2 ] that

lim
r!+1

r�2 lnP (T (W ) � r) = �1

2
JT ;

where

JT = inff
Z 1

0

Z 1

0
u2xy(x; y)dxdy ju 2 U; T (u) � 1g:

However the arising extremal problem can be written also in the dual form, namely

J�1T = supfT (u) ju 2 Sg;
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so that the problem of evaluation of the constant JT belongs to the class of prob-
lems (1.3).

It is possible to consider on I2 similar Gaussian �elds, for example, the Brow-
nian pillow or the tucked Brownian sheet W1(s; t) with the covariance

K1(�s; �t) = (min(s1; t1)� s1t1)(min(s2; t2)� s2t2) ;

Brownian pillow-slips, or Kiefer �elds W2(s; t) and W3(s; t) with covariances

K2(�s; �t) = min(s1; t1)(min(s2; t2)� s2t2) ;

K3(�s; �t) = (min(s1; t1)� s1t1)min(s2; t2) ;

as well as the pinned Brownian sheet or Brownian bed-sheet W4(s; t) with the
covariance

K4(�s; �t) = min(s1; t1)min(s2; t2)� s1t1s2t2 :

In these cases the calculation of the constant JT is again reduced to the problem
(1.3) but in the de�nition of the space U , besides (1.1), there appear new boundary
conditions on other sides of the unit square. The constant JT is interesting for the
description of large deviation asymptotics of the functional T . It is also important
in some problems of Statistics, in particular when calculating the limiting Pitman
and approximate Bahadur eÆciencies of distribution-free tests based on functionals
of empirical �elds ( see [ 3 ] ).

One more problem important for Statistics which leads in the two-dimensional
case to the calculation of constants JT is a problem of moderately large deviations
of empirical measures ( see Borovkov and Mogulski [ 4 ] and Ermakov [ 5 ] ).
Such deviations are used when evaluating the so-called intermediate or Kallenberg
eÆciency ( see [6] and [7]).

B. Functional law of the iterated logarithm .
LetW (�s; �t) be again the Brownian sheet. We consider the random broken lines

fmn(s; t) = [4mn ln lnmn]�
1

2W (ms; nt); m; n � 3 :

It was proved in the paper of Park [ 8 ] ( see also [ 9 ] ), that for almost all
trajectories the set of limiting points for the sequence ffmn(s; t) : m;n � 3g
coincides with the Strassen ball S in U .

If T is the continuous mapping of the space C(I2) in R1 it follows from the
result of Park ( see [ 1 ], x17 ), that almost surely

lim sup
m;n!1

T (fmn) = supfT (u) ju 2 Sg: (1:4)
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Hence we obtain again the problem (1.3). The value of the constant in the right-
hand side of (1.4) is known actually only for few functionals T . The technique
developed in this paper permits us to enlarge considerably this set of functionals.

C. Local asymptotic optimality of independence tests.

Let (X1; Y1); :::; (Xn; Yn) be a sample from bivariate continuous distribution
function (d.f.) F (x; y).

To test the independence of components X and Y the statistics based on the
empirical distribution functions ( e.d.f) are frequently used. Let Fn(x; y) be the
e.d.f. based on the initial sample, and Gn(x) and Hn(y) are the e.d.f. constructed
on the basis of X1; :::;Xn and Y1; :::; Yn correspondingly.

We can consider as statistics for testing of independence the functionals T (�n)
of random �elds

�n(x; y) =
p
n(Fn(x; y �Gn(x)Hn(y)); (x; y) 2 R2: (1:5)

If the functional T (�n) corresponds to the distribution-free statistic, we can assume
that the distributions of Xi; 1 � i � n, and Yj; 1 � j � n, are uniform on [ 0,1 ]
and then the �eld �n(x; y) converges weakly in the Skorokhod space D(I2) to the
Brownian pillow W1(x; y).

If one of the distributions of components is known it is natural to consider
the empirical �elds

p
n(Fn(x; y)�xHn(y)) and

p
n(Fn(x; y)�Gn(x)y) converging

weakly to Brownian pillow-slipsW2(x; y) andW3(x; y). In case when distributions
of both components are known, we obtain the �eld

p
n(Fn(x; y)� xy) converging

weakly to the pinned Brownian sheet W4(x; y):
As the alternative to the independence hypothesis we consider the widespread

model ( see, for example, [ 11 ] - [14 ] or [ 3 ], Ch. V ), when the joint d.f. of
observations is

F (x; y; �) = G(x)H(y) + �
(G(x);H(y)); � � 0; (1:6)

where G and H are marginal d.f.'s and where the non-negative function 
 is called
dependence function and is such that


 � 0; 
 2 C2(I2); 
(@I2) = 0:

The alternative (1.6) is an important particular case of the so-called alternative of
strict positive quadrant dependence when it is supposed that

F (x; y) � G(x)H(y)

for all x and y, and the sign of a strict inequality takes place at least for one point
(x; y).
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The measure of local Bahadur eÆciency for statistics of the type Tn = T (�n) is
the local index bT (
) calculated according to certain rule and taking into account
the large deviation asymptotics of Tn under the null hypothesis and its almost sure
behavior under the alternative ( see [10 ] or [ 3 ]) . Due to the local variant of
Bahadur-Raghavachari inequality [ 10 ] it is true that

bT (
) �
Z 1

0

Z 1

0

2
xy(x; y)dxdy: (1:7)

To describe the domain of local optimality for the sequence Tn we must �nd for
which functions 
 the sign of equality is attained in (1.7) . It results again in
problem (1.3). The technique developed below permits to solve a lot of such
problems.

2. The space H and its properties .

Consider on the space

X = fu 2 C2(I2) ju(x; 0) = u(0; y) = 0g
a bilinear form

[u; v] =

Z
I2
uxy(x; y) vxy(x; y)dxdy: (2:1)

Proposition 1. The form (2.1) de�nes on X a scalar product.

Proof. All properties of scalar product are obvious unless (2.1). The latter follows
from the identity

u(x; y) =

Z x

0

Z y

0
uxy(x; y)dxdy; (2:2)

which is true for all u 2 X due to boundary conditions.
In fact, if [u; u] = 0 then uxy � 0, whence by virtue of (2.2) u � 0:2

Denote by H the closure of the space X under the norm k � k induced by the
scalar product (2.1). Clearly H is the Hilbert space.

Proposition 2. The embedding of the space H into the space C(I2) is

compact.

Proof. Let us rewrite the formula (2.2) in the form

u = KDxDy u; (2:3)
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where Dx and Dy are the operators of di�erentiation andK is the Volterra integral
operator. As the operator DxDy acting from H into L2[0; 1] is bounded and K
is the compact operator acting from L2[0; 1] into C(I2) we get immediately the
required assertion. 2

Proposition 3. The embedding of the space H into the space W 1
2 (I

2) is

compact.

Proof. Similarly to (2.3) we have two formulas

ux = KyDxDy u ; uy = KxDxDy u;

where Kx and Ky are the operators of taking the primitives with respect to corre-
sponding variables. The compactness of the embedding of H into W 1

2 (I
2) follows

from the compactness of operators Kx and Ky in L2(I2). 2
It follows from Proposition 2 that the functions from H satisfy the boundary

conditions (1.1). For such functions in the space W 1
2 (I

2) it is possible to introduce
the equivalent norm k ru kL2(I2).

Remark 1. It follows from Fubini theorem that for any function u 2 H it is
true that for almost all x uxy(x; �) 2 L2[0; 1]. Hence ux(x; �) 2 W 1

2 (I) for almost
all x 2 I and similarly uy(�; y 2W 1

2 (I) for almost all y 2 I.
Remark 2. The attempt to remove a part of boundary conditions (1.1) would

result in that the form (2.1) becomes degenerate. But even if we correct it by
the addition of lower term, for example < u; v >L2(I2), where the symbol < �; � >
means the scalar product, the obtained space cannot be embedded into C(I2) as
well as into W 1

2 (I
2) because the existence of the mixed Sobolev derivative does

not imply, generally speaking, the existence of the �rst derivatives.
Let us introduce the following subspaces of the space H

H1 = fu 2 H ju(1; y) = u(x; 1) = 0g;
H2 = fu 2 H ju(1; y) = 0g;
H3 = fu 2 H ju(x; 1) = 0g;

as well as

H4 = fu 2 H ju(1; 1) = 0g:
It is clear now that the problems of the type (1.3) described above in A�C can
be formalized as follows

6



�nd the maximum of the homogeneous functional T (u) on the unit ball of the space

H or one of its subspaces H1�H4 and �nd ( in the problem C) those elements u,
on which this maximum is attained.

The space H should be used in the problem A for the analysis of large devia-
tion asymptotics and in the problem B for the formulation of the law of iterated
logarithm for functionals of Brownian sheet. The space H1 should be used in the
problem A for large deviations of functionals of the Brownian pillow W1 and in
the problem C when studying the local optimality of tests based on the random
�eld (1.5). The spaces H2 and H3 occur at the analysis of Kiefer �eldsW2 and W3

and empirical �elds when one of marginal distribution of bivariate observations
is known. The space H4 is suitable for the study of pinned Brownian sheet W4

and empirical �elds in the problems when both marginal distributions of initial
observations are known.

One of suÆcient conditions for the existence of the maximum which is ful�lled
in almost all important cases is the continuity of the functional T on the space
where H can be embedded compactly, for example, on C(I2).

Note that due to homogeneity of the functional T the maximum can be taken
over the unit sphere S1 instead of the unit ball S.

3. Problems with linear forms .

We begin with the easiest case when

T (u) = [b(u)]2;

where b is the linear functional on H and we must �nd

supf[b(u)]2 ju 2 S1g;

or equivalently
inffk u k2 j b(u) = 1g: (3:1)

Let us assume in addition that the functional b is continuous on the space C(I2):
Then by Riesz{Markov theorem

b(u) =

Z
I2
u d�;

where � is a �nite charge on I2:
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The necessary condition of the minimum in (3.1) is thus reduced to the Euler-
Lagrange equation

�uxxyy = � (3:2)

under boundary conditions on @I2 including natural ones. The numerical Lagrange
multiplier � is found from the norming condition b(u) = 1.

The solution of the boundary problem for the equation (3.2) is given by the
formula

u(x; y) = ��1
Z
I2
K(x; y; s; t)d�(s; t); (3:3)

where K is the Green function of the operator D2
xD

2
y for the appropriate set of

boundary conditions. It follows from the norming condition and (3.3) that

� =

Z
I2

Z
I2
K(x; y; s; t)d�(x; y)d�(s; t): (3:4)

The Green functions for the operator D2
xD

2
y under the boundary conditions

included in the de�nition of the space H and its subspaces H1 � H4 are well-
known in Mathematical Physics. In fact they coincide with the covariances of
Gaussian �elds listed in the formulation of the problem A. For convenience we
give them below.
1. If u 2 H and the boundary conditions are u(x; 0) = u(0; y) = 0 together with
the natural boundary conditions ux(1; y) = uy(x; 1) = 0, the Green function is

K(x; y; s; t) = min(x; s)min(y; t) :

2. If u 2 H1 and the boundary conditions are u(x; 0) = u(0; y) = u(x; 1) =
u(1; y) = 0, the Green function is

K1(x; y; s; t) = (min(x; s)� xs) (min(y; t)� yt) :

3. If u 2 H2 with the boundary conditions u(x; 0) = u(0; y) = u(1; y) = uy(x; 1) =
0, the Green function is

K2(x; y; s; t) = (min(x; s)� xs)min(y; t) :

Similarly, for the space H3 the Green function is

K3(x; y; s; t) = min(x; s)(min(y; t)� yt) :

4. Finally, if u 2 H4 with the boundary conditions u(x; 0) = u(0; y) = uxxy(x; 1) =
uxyy(1; y) = u(1; 1) = 0, the Green function is equal to

K4(x; y; s; t) = min(x; s)min(y; t)� xyst :
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Consider three examples of applications of the obtained result to the problem
C. The linear case is usually well-studied and the examples given below do not
pretend to novelty but illustrate well the general approach described above.

First we consider the so-called �rst component of the omega-square statistic
for independence testing that was introduced in [ 31 ]. In the notations of the
problem C this statistic has an expression

Vn =

Z
R2

[Fn(x; y)�Gn(x)Hn(y)] sin�Gn(x) sin�Hn(y)dGn(x)dHn(y)

From the arguments given in [ 3 ], Ch. 5,6 it follows that the inequality (1.7) takes
the form

4�4(

Z
I2

(x; y) sin�x sin�ydxdy)2 �

Z
I2

2
xy(x; y)dxdy;

where the function 
 belongs to the subspace H1. Therefore due to (3.3) the local
Bahadur optimality of the statistic Vn in model (1.6) is attained whenever


(x; y) = C sin�x sin�y;C � 0:

(cf. with Corollary 2 of Theorem 6.6.3 in [ 3 ] ).
Other example is related to the Gini rank association coeÆcient introduced in

[ 16 ]. Long-term e�orts of Italian statisticians were devoted to its study , see, for
example, [ 17 ].

Denote by Ri the rank of Xi among X's and by Si the rank of Yi among Y 's.
The Gini rank association coeÆcient rG is de�ned by the formula

rG =
2

Dn

nX
i=1

(jn+ 1�Ri � Sij � jRi � Sij);

where Dn = n2 for even n and Dn = n2 � 1 for odd n.
From [ 18 ] it follows that whenever the mixed derivative 
xy(x; y) in model

(1.6) is bounded, the local Bahadur index of rG is equal to

24(

Z 1

0
[
(x; x) + 
(1� x; x)]dx)2;

Thus the inequality (1.7) takes the form

24(

Z 1

0
[
(x; x) + 
(1� x; x)]dx)2 �

Z 1

0

Z 1

0

2
xy(x; y)dxdy:

In this case
�(x; y) = Æ(x � y) + Æ(1 � x� y); (3:4)
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where Æ(x) means a delta-measure in the point x. Substituting in the formula
(3.3) the Green function K1(x; y; s; t) = (min(x; s) � xs) (min(y; t) � yt) and the
measure (3.4), we obtain after some calculations


G(x; y) = C(jx� yj3 + jx+ y � 1j3 � 3(x2 + y2) + 3(x+ y � 1)); C > 0:

It is curious that it is a natural example of dependence function and hence of
a copula with cubic sections. The interest to such copulas has arisen after the
publication of the recent paper [ 19 ].

Similar arguments may be used for the analysis of the Spearman's footrule
which is based on the statistic

rf =
nX
i=1

jRi � Sij;

It was proposed by Spearman in [ 20 ], and the interest to it has increased after
the papers [ 21 ] - [ 23 ] and a number of others.

In this case the local index has a form

bf (
) = 90(

Z
R2


(x; x)dx)2;

and the "optimum" dependence function has again cubic sections and looks as
follows:


f (x; y) = C[jx� yj3 � (x+ y)3 + 2xy(x2 + y2 + 2)]; C > 0:

The third example is connected with the generalization of Kendall rank cor-
relation coeÆcient � . This coeÆcient is the nonlinear rank statistic and in the
notations of the previous example has a form

�n = (n(n� 1))�1
X

1�i6=j�n

sign(Ri �Rj)sign(Si � Sj)

Its properties are well-studied ( see, for example, [ 24 ], [ 25 ]. ) It is known, in
particular, that the statistic �n is locally Bahadur optimal in the problem of in-
dependence testing against alternatives (1.6) only for Farlie-Gumbel-Morgenstern
dependence function


FGM(x; y) = Cx(1� x)y(1� y); C > 0:

Kochar and Gupta proposed in [ 26 ] an interesting generalization of Kendall
statistic of the order k � 1 which coincides with Kendall statistic at k = 1. It was
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shown in [27 ] that the local Bahadur optimality of Kochar-Gupta statistic results
in the inequality

(k + 1)4(2k + 1)2(

Z
I2
(xy)k�1
(x; y)dxdy)2 �

Z
I2

2
xy(x; y)dxdy; (3:5)

where the function 
 is taken again from the subspace H1. From (3.3) it follows
that the local Bahadur optimality is possible only for Woodworth dependence
function


W (x; y) = Cx(1� xk)y(1� yk); C > 0:

4. Problems with separated variables .

In this section we solve the problem (1.3) in the case when

b(u) = [px(py(u(x; y))]
2:

Here px and py are two seminorms de�ned on functions of one variable, and px has
a property

px(jvj) � px(v): (4:1)

The arguments presented below are valid for any space of H; H1; H2; H3, but not
for H4.

Let consider two pairs of auxiliary one-dimensional extremal problems

�
(x)
k = sup

Ak

[px(v)]
2 k = 1; 2; (4:2)

�
(y)
j = sup

Aj

[py(v)]
2; j = 1; 2; (4:3)

where
A1 = fv 2W 1

2 (I)j v(0) = 0;
R
I v

02(x)dx � 1g;

A2 = fv 2 A1j v(1) = 0g:

The following theorem is our most essential result.

THEOREM 1 . Suppose the upper bounds in problems (4.2) and (4.3) are

attained. Then the maximum in (1.3) is also attained and equals:

a). � = �
(x)
1 �

(y)
1 for the space H;
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b). � = �
(x)
2 �

(y)
2 for the space H1;

c). � = �
(x)
2 �

(y)
1 and � = �

(x)
1 �

(y)
2 for the spaces H2 and H3 correspondingly.

If the extremals on which the upper bounds in problems (4.2) and (4.3) are

attained are unique (up to the factor �1 ) , the extremal in (1.3) is also unique

up to the factor �1 and equals the product of appropriate univariate extremals.

Proof. All cases in the theorem are analyzed identically and we consider for
de�niteness case a). Let obtain �rst the estimate from above for the right-hand
side in (1.3) and let prove that it is attained on the extremal mentioned above.

From the triangle inequality for py it follows that for any x1 6= x2 one has

jpy(u(x1; y)� py(u(x2; y)j � py(u(x1; y)� u(x2; y):

Hence for all x 2 I; h > 0

h�1jpy(u(x; �)) � py(u(x� h; �))j � py
�
h�1(u(x; �) � u(x� h; �))

�
(4:4)

( for x� h < 0 we assume that u(x� h; �) � 0 ). Now we estimate the right part
of (4.4) in the norm L2(I):R 1

0 p
2
y(h

�1(u(x; �) � u(x� h; �)))dx �

�
(y)
1

R 1
0

R 1
0 [h

�1(uy(x; �) � uy(x� h; �))]2dydx � �
(y)
1

R 1
0

R 1
0 u

2
xy(x; y)dxdy

Therefore the ratios
h�1[py(u(x; �)) � py(u(x� h; �))]

are bounded in the norm L2(I) uniformly in h > 0. From Lemma 2.1 of Ch.6 in [28
] it follows that the function x ! py(u(x; �)) has generalized derivative belonging
to L2(I). Passing to the limit in (4.4) as h! 0, we obtain for almost all x 2 I the
inequality

j d
dx

py(u(x; �)j � py(ux(x; �)): (4:5)

( The right part of this inequality is de�ned for almost all x 2 I due to Remark 1
of Section 2 ).

Therefore for all u 2 H

b(u) = [px(py(u(x; y))]
2 �

� �
(x)
1

R 1
0 [

d
dx (py(u(x; y))]

2dx

� �
(x)
1

R 1
0 [(py(ux(x; y)]

2dx

� �
(x)
1 �

(y)
1

R 1
0

R 1
0 u

2
xy(x; y)dxdy: (4:6)
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Thus
supfb(u) ju 2 S1g � �

(x)
1 �

(y)
1 :

Now let v1 be the extremal in the problem (4.2) for k = 1 and v2 be the
extremal in the problem (4.3) for j = 1: Due to (4.1) we can assume that v1 is
non-negative. Put u0(x; y) = v1(x)v2(y): Then

k u0 k2H=
Z
I2
u2xy(x; y)dxdy =

Z 1

0
v021 (x)dx

Z 1

0
v022 (y)dy � 1;

so that u0 2 S. Let calculate now b(u0). Taking in account the non-negativity of
v1 we get:

b(u0) = [px(py(v1(x)v2(y)))]
2 = [px(v1(x)py(v2(y))]

2

= [px(v1(x))py(v2(y))]
2 = �

(x)
1 �

(y)
1 :

Thus the theoretical maximum of b(u) on S1 is reached on u0 and equals exactly

to �
(x)
1 �

(y)
1 .

Suppose now that the extremals v1 and v2 are unique up to a constant. Then
the last inequality in (4.6) becomes equality only if for almost all x 2 I

ux(x; �) = �(x)v2(y):

But then

u(x; y) =

Z x

0
�(t)dt � v2(y) = ��(x)v2(y):

If the �rst inequality in (4.6) also becomes equality then ��(x) = C �v1(x). From the
norming condition we obtain C = �1 and hence the extremal function is necessary
equal to �u0. 2
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5. Applications to problems A, B,C.

Very natural and important examples of seminorms px and py are norms in
spaces Lp; 1 � p � +1: Let 1 � p1; p2 � +1 and let

px(v) =

�Z 1

0
jv(t)jp1dt

�1=p1
; py

�Z 1

0
jv(t)jp2dt

�1=p2
;

then

px(py(v(x; y)) =

�Z 1

0
[

Z 1

0
jv(s; tjp2dt]p1=p2ds

�1=p1
:

The constants �xk and �
y
k; k = 1; 2, appearing in the theorem of the previous section

are well-known and are equal to

�x1 = �1(p1); �y1 = �1(p2);

�x2 = �2(p1); �y2 = �2(p2);

where

�1(p) =
2

p�
(1 +

p

2
)(p�2)=p

 
�(12 +

1
p)

�(1 + 1
p)

!2

; �2(p) = �1(p)=4: (5:1)

For the �rst time the constants �m(p);m = 1; 2 were calculated by Strassen
[ 29 ], later his result was reproduced, supplemented or partially rediscovered in [
30] - [ 34 ]. We write out the values of these constants for p = 1; 2 and p = +1:

�1(1) = 1=3; �1(2) = 4=�2; �1(+1) = 1;

�2(1) = 1=12; �2(2) = 1=�2; �2(+1) = 1=4:

In [ 34 ] the tables of �2(p) for small values of p > 1 are given.
We return now to problems A;B and C described above. Consider �rst the

problem A on the rough large deviation asymptotics for functionals of Gaussian
�elds. We put for any �eld � on I2

k � k2p1;p2=
�Z 1

0
[

Z 1

0
j�(s; t)jp2dt]p1=p2ds

�2=p1
:

This functional ( the square of the anisotropic norm ) is suitable for the appli-
cation of Theorem 1. Substituting instead of � Gaussian �eldsW;W1;W2 and W3,
we obtain the following theorem.
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THEOREM 2 . For 1 � p1; p2 � 1 the following asymptotics are true:

limr!+1 r�2 lnPfk W k2p1;p2� rg = �(2�1(p1)�1(p2))�1;

limr!+1 r�2 lnPfk W1 k2p1;p2� rg = �(2�2(p1)�2(p2))�1;

limr!+1 r�2 lnPfk W2 k2p1;p2� rg = �(2�1(p2)�2(p1))�1;

limr!+1 r�2 lnPfk W3 k2p1;p2� rg = �(2�1(p1)�2(p2))�1:

where the constants �1(p); �2(p) are described in (5.1).

The asymptotics presented above are new except for two cases. From the book
of Lifshits [ 1 ], x14, where the exact tail asymptotics for the suprema of considered
�elds are described, it is possible to extract our results for p1 = p2 = +1.

Another case when it is not diÆcult to obtain such asymptotics is the case
p1 = p2 = 2. As the eigenfunctions and the eigenvalues of integral operators
with symmetric kernels K and K1 � K3 are known in the explicit form, it is
possible to expand the random �eldsW and W1�W3 in orthogonal random series
in two variables (the Karhunen-Loeve series, see, for example, [ 35 ], p. 75 - 76),
converging in L2(I

2). The square of the norm in L2(I
2) of such �elds is represented

as an in�nite weighted sum of squares of independent standard Gaussian variables
with the weights equal to eigenvalues of corresponding kernels. It remains to
apply the well-known result of Zolotarev [ 36 ] by virtue of which the rough large
deviation asymptotics is de�ned by the �rst eigenvalue of an appropriate kernel.
Close arguments are contained in [37], where the problem of small deviations is
studied.

However the results of a type

lim
r!+1

r�2 lnPfsup
y

Z 1

0
jW1(x; yjdx � rg = �24;

that corresponds to the case p1 = 1; p2 = +1 or

lim
r!+1

r�2 lnPf[
Z 1

0
[

Z 1

0
jW2(x; yj3dy]

5

3 dx � r5g = � 3 � 5 2

3 � �2(43)�2(65)
2

1

15 � 7 3

5 � �2(56 )�2( 7
10 )

�2;

that answers the case p1 = 5; p2 = 3, not speaking on arbitrary p1 and p2, are new.
In principle the norm Lp can be considered with non-negative weights �, how-

ever the set of weights for which we can explicitly write out the values �1 and �2
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of univariate extremal problems is not large.We know, for example, from [38] the
classical weight of Anderson-Darling for L2(I)

��(t) = [t(1� t)]�1; 0 � t � 1;

for which

supf
Z 1

0
v2(t)��(t)dtjv 2 A2g = 1=2;

and the extremal is
p
3t(1 � t). Another example, which can be extracted from

table 5 in the book of Collatz [39 ], is the weight in the space L2(I) equal to
��(t) = (1 + t2)2 . In this case

supf
Z 1

0
v2(t)��(t)dtjv 2 A2g = 1=15;

and the extremal is
q

8
15� �

p
1 + t2 sin(4 arctan t): Combining these results for p1 =

p2 = 2, we get

lim
r!+1

r�2 lnPf
Z 1

0
[

Z 1

0
W 2

2 (x; y=[x(1 � x)(1 + y2)2]dxdy � r2g = �15;

that is again a new result.
Applying the obtained results to the �eld W (x; y) in the problem B, we can

write, saving the notations, that with probability 1

lim sup
m;n!1

[4mn ln lnmn]�1 sup
s

Z 1

0
jW (ms; nt)j2dt = 4=�2;

and a number of similar relations can be established analogously.
We give here one more application to the problem C. The functional

T �(W2) = sup
x
j
Z 1

0
W2(x; y)dyj (5:2)

is of interest because it leads to the known distribution-free test of independence
proposed by Durbin [ 40 ]. It can be obtained substituting in T �(�) instead of the
�elds W2 the empirical �eld (1.5). Similar but more complicated functionals were
considered in the preprint [ 41 ].

The distribution of the functional (5.2) up to the scale factor coincides with
the classical distribution of Kolmogorov statistic that increases the interest to this
functional and corresponding independence criterion. The condition of Bahadur
local optimality for alternatives (1.6) takes the form ( see [ 7 ], Ch. 6):

48(sup
x
j
Z 1

0

(x; y)dyj)2 �

Z 1

0

Z 1

0

2
xy(x; y)dxdy:
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The extremals for univariate problems of �nding maxima on the set A2 for func-
tionals supt jv(t)j and j R 10 v(t)dtj are well known ( see [ 7 ], Ch.6 ). They are
unique up to the factors �1 and are equal correspondingly to min(t; 1 � t) andp
3t(1 � t). Taking their product as prescribed by Theorem 1, we get as a result

that the Durbin test is locally optimal only for dependence function 
(x; y) =
Cmin(x; 1 � x)y(1 � y); C > 0; that coincides with the result obtained in [ 7 ],
x6:6 by means of much longer proof.

It is worth to emphasize that the discovery of new results in the problem
C relies on the evaluation of rough large deviation asymptotics for functionals of
prelimit empirical �elds. However if this asymptotics is already found our theorem
gives the simple and e�ective way for the description of local optimality conditions.

In conclusion we note that all results can be carried over multivariate case.
The formulations are similar but more cumbersome because of sharp extension of
the set of boundary conditions. This made us to be limited by the bivariate case.
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