906 research outputs found

    Determinantal point processes associated with Hilbert spaces of holomorphic functions

    Get PDF
    International audienceWe study determinantal point processes on C induced by the reproducing kernels of generalized Fock spaces as well as those on the unit disc D induced by the reproducing kernels of generalized Bergman spaces. In the first case, we show that all reduced Palm measures of the same order are equivalent. The Radon-Nikodym derivatives are computed explicitly using regularized multiplicative functionals. We also show that these determinantal point processes are rigid in the sense of Ghosh and Peres, hence reduced Palm measures of different orders are singular. In the second case, we show that all reduced Palm measures, of all orders, are equivalent. The Radon-Nikodym derivatives are computed using regularized multiplicative function-als associated with certain Blaschke products. The quasi-invariance of these deter-minantal point processes under the group of diffeomorphisms with compact supports follows as a corollary

    Heat to Electricity Conversion by a Graphene Stripe with Heavy Chiral Fermions

    Full text link
    A conversion of thermal energy into electricity is considered in the electrically polarized graphene stripes with zigzag edges where the heavy chiral fermion (HCF) states are formed. The stripes are characterized by a high electric conductance Ge and by a significant Seebeck coefficient S. The electric current in the stripes is induced due to a non-equilibrium thermal injection of "hot" electrons. This thermoelectric generation process might be utilized for building of thermoelectric generators with an exceptionally high figure of merit Z{\delta}T \simeq 100 >> 1 and with an appreciable electric power densities \sim 1 MW/cm2.Comment: 8 pages, 3 figure

    Deformation and Depinning of Superconducting Vortices from Artificial Defects: A Ginzburg-Landau Study

    Full text link
    Using Ginzburg-Landau theory, we have performed detailed studies of vortices in the presence of artificial defect arrays, for a thin film geometry. We show that when a vortex approaches the vicinity of a defect, an abrupt transition occurs in which the vortex core develops a ``string'' extending to the defect boundary, while simultaneously the supercurrents and associated magnetic flux spread out and engulf the defect. Current induced depinning of vortices is shown to be dominated by the core string distortion in typical experimental situations. Experimental consequences of this unusual depinning behavior are discussed.Comment: 10 pages,9 figure

    London equation studies of thin-film superconductors with a triangular antidot lattice

    Full text link
    We report on a study of vortex pinning in nanoscale antidot defect arrays in the context of the London Theory. Using a wire network model, we discretize the array with a fine mesh, thereby providing a detailed treatment of pinning phenomena. The use of a fine grid has enabled us to examine both circular and elongated defects, patterned in the form of a rhombus. The latter display pinning characteristics superior to circular defects constructed with the similar area. We calculate pinning potentials for defects containing zero and single quanta, and we obtain a pinning phase diagram for the second matching field, H=2ΦoH = 2 \Phi_{o}.Comment: 10 pages and 14 figure

    Sensing cloud optimization to solve ED of units with valve-point effects and multi-fuels

    Get PDF
    In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented

    Dissipative Dynamics of a Josephson Junction In the Bose-Gases

    Full text link
    The dissipative dynamics of a Josephson junction in the Bose-gases is considered within the framework of the model of a tunneling Hamiltonian. The effective action which describes the dynamics of the phase difference across the junction is derived using functional integration method. The dynamic equation obtained for the phase difference across the junction is analyzed for the finite temperatures in the low frequency limit involving the radiation terms. The asymmetric case of the Bose-gases with the different order parameters is calculated as well

    Quantum phase transitions and collapse of the Mott gap in the d=1+ϵd=1+\epsilon dimensional half-filled Hubbard model

    Get PDF
    We study the low-energy asymptotics of the half-filled Hubbard model with a circular Fermi surface in d=1+ϵd=1+\epsilon continuous dimensions, based on the one-loop renormalization-group (RG) method. Peculiarity of the d=1+ϵd=1+\epsilon dimensions is incorporated through the mathematica structure of the elementary particle-partcile (PP) and particle-hole (PH) loops: infrared logarithmic singularity of the PH loop is smeared for ϵ>0\epsilon>0. The RG flows indicate that a quantum phase transition (QPT) from a metallic phase to the Mott insulator phase occurs at a finite on-site Coulomb repulsion UU for ϵ>0\epsilon>0. We also discuss effects of randomness.Comment: 12 pages, 10 eps figure

    Threshold electric field in unconventional density waves

    Full text link
    As it is well known most of charge density wave (CDW) and spin density wave (SDW) exhibit the nonlinear transport with well defined threshold electric field E_T. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behaviour at T_c, unlike the one in conventional CDW. The present result in the 3D weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 4 pages, 2 figure

    Weak localization in InSb thin films heavily doped with lead

    Full text link
    The paper reports on the investigations of the weak localization (WL) effects in 3D polycrystalline thin films of InSb. The films are closely compensated showing the electron concentration n>10^{16} cm^{-3} at the total concentration of the donor and acceptor type structural defects >10^{18} cm^{-3}. Unless Pb-doped, the InSb films do not show any measurable or show very small WL effect at 4.2 K. The Pb-doping to the concentration of the order of 10^{18} cm^{-3} leads to pronounced WL effects below 7 K. In particular, a clearly manifested SO scattering is observed. From the comparison of the experimental data on temperature dependence of the magnetoresistivity and sample resistance with the WL theory, the temperature dependence of the phase destroying time is determined. The determination is performed by fitting theoretical terms obtained from Kawabata's theory to experimental data on magnetoresistance. It is concluded that the dephasing process is connected to three separate interaction processes. The first is due to the SO scatterings and is characterized by temperature-independent relaxation time. The second is associated with the electron-phonon interaction. The third dephasing process is characterized by independent on temperature relaxation time tau_c. This relaxation time is tentatively ascribed to inelastic scattering at extended structural defects, like grain boundaries. The resulting time dephasing time shows saturation in its temperature dependence. The temperature dependence of the resistance of the InSb films can be explained by the electron-electron interaction for T2 K.Comment: 15 pages with 5 figure

    Realistic description of electron-energy loss spectroscopy for One-Dimensional Sr2_2CuO3_3

    Full text link
    We investigate the electron-energy loss spectrum of one-dimensional undoped CuO3_{3} chains within an extended multi-band Hubbard model and an extended one-band Hubbard model, using the standard Lanczos algorithm. Short-range intersite Coulomb interactions are explicitly included in these models, and long-range interactions are treated in random-phase approximation. The results for the multi-band model with standard parameter values agree very well with experimental spectra of Sr2_{2}CuO3_{3}. In particular, the width of the main structure is correctly reproduced for all values of momentum transfer. It is shown for both models that intersite Coulomb interactions mainly lead to an energy shift of the spectra. We find no evidence for enhanced intersite interactions in Sr2_{2}CuO3_{3}.Comment: 4 pages, 4 figure
    • …
    corecore