49 research outputs found
Effective Lagrangians and Universality Classes of Nonlinear Bigravity
We discuss the fully non-linear formulation of multigravity. The concept of
universality classes of effective Lagrangians describing bigravity, which is
the simplest form of multigravity, is introduced. We show that non-linear
multigravity theories can naturally arise in several different physical
contexts: brane configurations, certain Kaluza-Klein reductions and some
non-commutative geometry models. The formal and phenomenological aspects of
multigravity (including the problems linked to the linearized theory of massive
gravitons) are briefly discussed.Comment: 41 pages, 4 Figures, final version to be published in Phys.Rev.
Regular particle acceleration in relativistic jets
Exact solution is obtained for electromagnetic field around a conducting
cylinder of infinite length and finite radius, with a periodical axial current,
when the wave length is much larger than the radius of the cylinder. The
solution describes simultaneously the fields in the near zone close to the
cylinder, and transition to the wave zone. Proper long-wave oscillations of
such cylinder are studied. The electromagnetic energy flux from the cylinder is
calculated. These solutions could be applied for description of the
electromagnetic field around relativistic jets from active galactic nuclei and
quasars and particle acceleration inside jets.Comment: 12 pages, 1 figure. To appear in Proc. of the Workshop The
Multiwavelength Approach To Unidentified Gamma Ray Sources. The University of
Hong Kong - Hong Kong, China, 1-4 June 200
SN1A data and the CMB of Modified Curvature at short and long distances
The SN1a data, although inconclusive, when combined with other observations
makes a strong case that our universe is presently dominated by dark energy. We
investigate the possibility that large distance modifications of the curvature
of the universe would perhaps offer an alternative explanation of the
observation. Our calculations indicate that a universe made up of no dark
energy but instead, with a modified curvature at large scales, is not
scale-invariant, therefore quite likely it is ruled out by the CMB
observations. The sensitivity of the CMB spectrum is checked for the whole
range of mode modifications of large or short distance physics. The spectrum is
robust against modifications of short-distance physics and the UV cutoff when:
the initial state is the adiabatic vacuum, and the inflationary background
space is de Sitter.Comment: 13 pages, 2 eps figures, typos corrected, references added; to appear
in Phys. Rev.
High Energy QCD: Stringy Picture from Hidden Integrability
We discuss the stringy properties of high-energy QCD using its hidden
integrability in the Regge limit and on the light-cone. It is shown that
multi-colour QCD in the Regge limit belongs to the same universality class as
superconformal =2 SUSY YM with at the strong coupling
orbifold point. The analogy with integrable structure governing the low energy
sector of =2 SUSY gauge theories is used to develop the brane picture
for the Regge limit. In this picture the scattering process is described by a
single M2 brane wrapped around the spectral curve of the integrable spin chain
and unifying hadrons and reggeized gluons involved in the process. New
quasiclassical quantization conditions for the complex higher integrals of
motion are suggested which are consistent with the duality of the
multi-reggeon spectrum. The derivation of the anomalous dimensions of the
lowest twist operators is formulated in terms of the Riemann surfacesComment: 37 pages, 3 figure
What Can WMAP Tell Us About The Very Early Universe? New Physics as an Explanation of Suppressed Large Scale Power and Running Spectral Index
The Wilkinson Microwave Anisotropy Probe microwave background data may be
giving us clues about new physics at the transition from a ``stringy'' epoch of
the universe to the standard Friedmann Robertson Walker description. Deviations
on large angular scales of the data, as compared to theoretical expectations,
as well as running of the spectral index of density perturbations, can be
explained by new physics whose scale is set by the height of an inflationary
potential. As examples of possible signatures for this new physics, we study
the cosmic microwave background spectrum for two string inspired models: 1)
modifications to the Friedmann equations and 2) velocity dependent potentials.
The suppression of low ``l'' modes in the microwave background data arises due
to the new physics. In addition, the spectral index is red (n<1) on small
scales and blue (n>1) on large scales, in agreement with data.Comment: 18 pages, 2 figures, submitted for publication in Physical Review D,
references added in this versio
Current noise in long diffusive SNS junctions in the incoherent MAR regime
Spectral density of current fluctuations at zero frequency is calculated for
a long diffusive SNS junction with low-resistive interfaces. At low
temperature, T << Delta, the subgap shot noise approaches linear voltage
dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the
normal conductor and voltage independent excess noise. This result can also be
interpreted as the 1/3-suppressed Poisson noise for the effective charge q =
e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At
higher temperatures, anomalies of the current noise develop at the gap
subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the
MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.
A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the and $\Upsilon
The shapes of the inclusive photon spectra in the processes \Jp \to \gamma
X and \Up \to \gamma X have been analysed using all available experimental
data.
Relativistic, higher order QCD and gluon mass corrections were taken into
account in the fitted functions. Only on including the gluon mass corrections,
were consistent and acceptable fits obtained. Values of
GeV and GeV were found for the
effective gluon masses (corresponding to Born level diagrams) for the \Jp and
\Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to
\gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine and . Values consistent with the current world
average were obtained only when gluon mass correction factors,
calculated using the fitted values of the effective gluon mass, were applied. A
gluon mass GeV, as suggested with these results, is consistent with
previous analytical theoretical calculations and independent phenomenological
estimates, as well as with a recent, more accurate, lattice calculation of the
gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
Does accelerating universe indicates Brans-Dicke theory
The evolution of universe in Brans-Dicke (BD) theory is discussed in this
paper.
Considering a parameterized scenario for BD scalar field
which plays the role of gravitational "constant" ,
we apply the Markov Chain Monte Carlo method to investigate a global
constraints on BD theory with a self-interacting potential according to the
current observational data: Union2 dataset of type supernovae Ia (SNIa),
high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD),
the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and
the cosmic microwave background (CMB) data. It is shown that an expanded
universe from deceleration to acceleration is given in this theory, and the
constraint results of dimensionless matter density and parameter
are, and
which is consistent with the
result of current experiment exploration, . In
addition, we use the geometrical diagnostic method, jerk parameter , to
distinguish the BD theory and cosmological constant model in Einstein's theory
of general relativity.Comment: 16 pages, 3 figure
Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors
Background Extracellular vesicles (EVs) have shown great potential for targeted therapy, as they have a natural ability to pass through biological barriers and, depending on their origin, can preferentially accumulate at defined sites, including tumors. Analyzing the potential of EVs to target specific cells remains challenging, considering the unspecific binding of lipophilic tracers to other proteins, the limitations of fluorescence for deep tissue imaging and the effect of external labeling strategies on their natural tropism. In this work, we determined the cell-type specific tropism of B16F10-EVs towards cancer cell and metastatic tumors by using fluorescence analysis and quantitative gold labeling measurements. Surface functionalization of plasmonic gold nanoparticles was used to promote indirect labeling of EVs without affecting size distribution, polydispersity, surface charge, protein markers, cell uptake or in vivo biodistribution. Double-labeled EVs with gold and fluorescent dyes were injected into animals developing metastatic lung nodules and analyzed by fluorescence/computer tomography imaging, quantitative neutron activation analysis and gold-enhanced optical microscopy. Results We determined that B16F10 cells preferentially take up their own EVs, when compared with colon adenocarcinoma, macrophage and kidney cell-derived EVs. In addition, we were able to detect the preferential accumulation of B16F10 EVs in small metastatic tumors located in lungs when compared with the rest of the organs, as well as their precise distribution between tumor vessels, alveolus and tumor nodules by histological analysis. Finally, we observed that tumor EVs can be used as effective vectors to increase gold nanoparticle delivery towards metastatic nodules. Conclusions Our findings provide a valuable tool to study the distribution and interaction of EVs in mice and a novel strategy to improve the targeting of gold nanoparticles to cancer cells and metastatic nodules by using the natural properties of malignant EVs.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas