249 research outputs found
Single stranded fully Modified-Phosphorothioate oligonucleotides can induce structured nuclear inclusions, alter nuclear protein localization and disturb the transcriptome In Vitro
Oligonucleotides and nucleic acid analogues that alter gene expression are now showing therapeutic promise in human disease. Whilst the modification of synthetic nucleic acids to protect against nuclease degradation and to influence drug function is common practice, such modifications may also confer unexpected physicochemical and biological properties. Gapmer mixed-modified and DNA oligonucleotides on a phosphorothioate backbone can bind non-specifically to intracellular proteins to form a variety of toxic inclusions, driven by the phosphorothioate linkages, but also influenced by the oligonucleotide sequence. Recently, the non-antisense or other off-target effects of 2âČ O- fully modified phosphorothioate linkage oligonucleotides are becoming better understood. Here, we report chemistry-specific effects of oligonucleotides composed of modified or unmodified bases, with phosphorothioate linkages, on subnuclear organelles and show altered distribution of nuclear proteins, the appearance of highly stable and strikingly structured nuclear inclusions, and disturbed RNA processing in primary human fibroblasts and other cultured cells. Phosphodiester, phosphorodiamidate morpholino oligomers, and annealed complimentary phosphorothioate oligomer duplexes elicited no such consequences. Disruption of subnuclear structures and proteins elicit severe phenotypic disturbances, revealed by transcriptomic analysis of transfected fibroblasts exhibiting such disruption. Our data add to the growing body of evidence of off-target effects of some phosphorothioate nucleic acid drugs in primary cells and suggest alternative approaches to mitigate these effects
On the degree of scale invariance of inflationary perturbations
Many, if not most, inflationary models predict the power-law index of the
spectrum of density perturbations is close to one, though not precisely equal
to one, |n-1| \sim O(0.1), implying that the spectrum of density perturbations
is nearly, but not exactly, scale invariant. Some models allow n to be
significantly less than one (n \sim 0.7); a spectral index significantly
greater than one is more difficult to achieve. We show that n \approx 1 is a
consequence of the slow-roll conditions for inflation and ``naturalness,'' and
thus is a generic prediction of inflation. We discuss what is required to
deviate significantly from scale invariance, and then show, by explicit
construction, the existence of smooth potentials that satisfy all the
conditions for successful inflation and give as large as 2.Comment: 7 pages, 2 figures, submitted to Phys. Rev.
Cosmic Microwave Background Anisotropy with Cosine-Type Quintessence
We study the Cosmic Microwave Background (CMB) anisotropies produced by
cosine-type quintessence models. In our analysis, effects of the adiabatic and
isocurvature fluctuations are both taken into account. For purely adiabatic
fluctuations with scale invariant spectrum, we obtain a stringent constraint on
the model parameters using the CMB data from COBE, BOOMERanG and MAXIMA.
Furthermore, it is shown that isocurvature fluctuations have significant
effects on the CMB angular power spectrum at low multipoles in some parameter
space, which may be detectable in future satellite experiments. Such a signal
may be used to test the cosine-type quintessence models.Comment: 21 pages, 9 figure
Cosmic Density Perturbations from Late-Decaying Scalar Condensations
We study the cosmic density perturbations induced from fluctuation of the
amplitude of late-decaying scalar condensations (called \phi) in the scenario
where the scalar field \phi once dominates the universe. In such a scenario,
the cosmic microwave background (CMB) radiation originates to decay products of
the scalar condensation and hence its anisotropy is affected by the fluctuation
of \phi. It is shown that the present cosmic density perturbations can be
dominantly induced from the primordial fluctuation of \phi, not from the
fluctuation of the inflaton field. This scenario may change constraints on the
source of the density perturbations, like inflation. In addition, a correlated
mixture of adiabatic and isocurvature perturbations may arise in such a
scenario; possible signals in the CMB power spectrum are discussed. We also
show that the simplest scenario of generating the cosmic density perturbations
only from the primordial fluctuation of \phi (i.e., so-called ``curvaton''
scenario) is severely constrained by the current measurements of the CMB
angular power spectrum if correlated mixture of the adiabatic and isocurvature
perturbations are generated.Comment: 31pages, 14figure
Paraspeckle subnuclear bodies depend on dynamic heterodimerisation of DBHS RNA-binding proteins via their structured domains
RNA-binding proteins of the DBHS (Drosophila Behavior Human Splicing) family, NONO, SFPQ, and PSPC1 have numerous roles in genome stability and transcriptional and posttranscriptional regulation. Critical to DBHS activity is their recruitment to distinct subnuclear locations, for example, paraspeckle condensates, where DBHS proteins bind to the long noncoding RNA NEAT1 in the first essential step in paraspeckle formation. To carry out their diverse roles, DBHS proteins form homodimers and heterodimers, but how this dimerization influences DBHS localization and function is unknown. Here, we present an inducible GFP-NONO stable cell line and use it for live-cell 3D-structured illumination microscopy, revealing paraspeckles with dynamic, twisted elongated structures. Using siRNA knockdowns, we show these labeled paraspeckles consist of GFP-NONO/endogenous SFPQ dimers and that GFP-NONO localization to paraspeckles depends on endogenous SFPQ. Using purified proteins, we confirm that partner swapping between NONO and SFPQ occurs readily in vitro. Crystallographic analysis of the NONOSFPQ heterodimer reveals conformational differences to the other DBHS dimer structures, which may contribute to partner preference, RNA specificity, and subnuclear localization. Thus overall, our study suggests heterodimer partner availability is crucial for NONO subnuclear distribution and helps explain the complexity of both DBHS protein and paraspeckle dynamics through imaging and structural approaches.Pei Wen Lee, Andrew C. Marshall, Gavin J. Knott, Simon Kobelke, Luciano Martelotto, Ellie Cho, Paul J. McMillan, Mihwa Lee, Charles S. Bond, and Archa H. Fo
Measuring CMB Polarization with BOOMERANG
BOOMERANG is a balloon-borne telescope designed for long duration (LDB)
flights around Antarctica. The second LDB Flight of BOOMERANG took place in
January 2003. The primary goal of this flight was to measure the polarization
of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz.
Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We
describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and
discuss some of the issues involved in the measurement of polarization with
bolometers. Lastly, we report on the 2003 flight and provide an estimate of the
expected results.Comment: 12 pages, 8 figures, To be published in the proceedings of "The
Cosmic Microwave Background and its Polarization", New Astronomy Reviews,
(eds. S. Hanany and K.A. Olive). Fixed typos, and reformatted citation
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
We present cosmological perturbations of kinetic components based on
relativistic Boltzmann equations in the context of generalized gravity
theories. Our general theory considers an arbitrary number of scalar fields
generally coupled with the gravity, an arbitrary number of mutually interacting
hydrodynamic fluids, and components described by the relativistic Boltzmann
equations like massive/massless collisionless particles and the photon with the
accompanying polarizations. We also include direct interactions among fluids
and fields. The background FLRW model includes the general spatial curvature
and the cosmological constant. We consider three different types of
perturbations, and all the scalar-type perturbation equations are arranged in a
gauge-ready form so that one can implement easily the convenient gauge
conditions depending on the situation. In the numerical calculation of the
Boltzmann equations we have implemented four different gauge conditions in a
gauge-ready manner where two of them are new. By comparing solutions solved
separately in different gauge conditions we can naturally check the numerical
accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
Bayesian joint estimation of non-Gaussianity and the power spectrum
We propose a rigorous, non-perturbative, Bayesian framework which enables one
jointly to test Gaussianity and estimate the power spectrum of CMB
anisotropies. It makes use of the Hilbert space of an harmonic oscillator to
set up an exact likelihood function, dependent on the power spectrum and on a
set of parameters , which are zero for Gaussian processes. The latter
can be expressed as series of cumulants; indeed they perturbatively reduce to
cumulants. However they have the advantage that their variation is essentially
unconstrained. Any truncation(i.e.: finite set of ) therefore still
produces a proper distribution - something which cannot be said of the only
other such tool on offer, the Edgeworth expansion. We apply our method to Very
Small Array (VSA) simulations based on signal Gaussianity, showing that our
algorithm is indeed not biased.Comment: 11pages, 4 figures, submitted to MNRA
Next-generation test of cosmic inflation
The increasing precision of cosmological datasets is opening up new
opportunities to test predictions from cosmic inflation. Here we study the
impact of high precision constraints on the primordial power spectrum and show
how a new generation of observations can provide impressive new tests of the
slow-roll inflation paradigm, as well as produce significant discriminating
power among different slow-roll models. In particular, we consider
next-generation measurements of the Cosmic Microwave Background (CMB)
temperature anisotropies and (especially) polarization, as well as new
Lyman- measurements that could become practical in the near future. We
emphasize relationships between the slope of the power spectrum and its first
derivative that are nearly universal among existing slow-roll inflationary
models, and show how these relationships can be tested on several scales with
new observations. Among other things, our results give additional motivation
for an all-out effort to measure CMB polarization.Comment: 10 pages, 8 figures, to appear in PRD; major changes are a reanalysis
in terms of better cosmological parameters and clarifications on the
contributions of polarization and Lyman-alpha dat
Detectability of Tensor Perturbations Through CBR Anisotropy (final published version)
Detection of the tensor perturbations predicted in inflationary models is
important for testing inflation as well as for reconstructing the inflationary
potential. We show that because of cosmic variance the tensor contribution to
the square of the CBR quadrupole anisotropy must be greater than about 20\% of
the scalar contribution to ensure a statistically significant detection of
tensor perturbations. This sensitivity could be achieved by full-sky
measurements on angular scales of and .Comment: 10 pages, uu-encoded postscript file, FERMILAB-PUB-94/175-
- âŠ