117 research outputs found

    Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering

    Get PDF
    The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo. Composite hydrogels comprising copolymer macromers of N-isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro. GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering

    Designing Public Transport To Foster Patronage And Social Inclusion

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne

    Closing capacity of segmental radius defects in rabbits.

    Get PDF
    Contains fulltext : 69155.pdf (publisher's version ) (Open Access)In the research of synthetic bone graft substitutes, the relevance for bone regeneration can be confirmed in a critical-sized model. In this study the rabbit radial defect was investigated as an ingenious model of critical size, due to its defect immobilizing intact ulna. In addition, the influence of poly(DL-lactic-co-glycolic acid) (PLGA) on bone regeneration was determined. Sixteen, 4-month-old rabbits received bilateral segmental radial defects of 15 or 20 mm. The osteotomy ends were marked with small titanium pins. Half of the group received injected PLGA microparticle/carboxymethylcellulose implants. Implantation time was 12 weeks. Evaluation consisted of radiographs after surgery and sacrifice, microcomputed tomography and histology. The radiographs revealed that the created defects were significantly smaller after sacrifice. Further a number of radii showed fibrocartilaginous interposition. Both findings indicated instability of the created defect. All evaluation techniques revealed that 15 and 20 mm were not of critical size, as most defects were more or less regenerated. PLGA microparticles did not influence bone regeneration significantly. In conclusion, 15- and 20-mm radius defects in 4-month-old rabbits were not a suitable model for bone regeneration as these defects were neither critical size nor stable. PLGA-microparticle degradation did not influence bone regeneration

    Effect of polymer molecular weight on the bone biological activity of biodegradable polymer/calcium phosphate cement composites.

    Get PDF
    Contains fulltext : 80854.pdf (publisher's version ) (Open Access)Previous studies demonstrated that the addition of biodegradable polymer microparticles to calcium phosphate (CaP) cement improves the cement's degradative behavior without affecting its handling characteristics, especially its injectability and moldability. We investigated the influence of molecular weight of polymeric microparticles included in CaP cement on implant degradation and bone formation in critical-sized defects. Forty rats received cranial defects filled with formulations of CaP cement and poly(DL-lactic-co-glycolic acid) (PLGA) microparticles. Microparticles consisted of 100% high- (HMW) or low-molecular-weight (LMW) PLGA or mixtures of these (25%, 50%, or 75%). Implantation time was 12 weeks. Porosity measurements showed that the 100% HMW group was significantly less porous than the other groups. Histology and histomorphometry revealed significantly greater implant degradation in the 100% LMW group. Defect bridging was mainly seen in the 75% and 100% LMW groups, with the highest amount of bone in the 100% LMW formulation. These results suggest that LMW PLGA microparticles are associated with better bone formation than HMW PLGA, which is most likely explained by the greater degradation of LMW PLGA microparticles. In conclusion, CaP cement composites with high percentages of LMW PLGA microparticles show good bone transductive behavior, with complete defect bridging. The 100% LMW group turned out to be the best formulation

    In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres.

    Get PDF
    Contains fulltext : 80288.pdf (publisher's version ) (Open Access)To improve the in vivo resorption of an injectable calcium phosphate cement (CPC) for bone tissue engineering purposes, in previous experiments macroporosity was introduced by the in situ degradation of incorporated gelatin microspheres. Gelatin microspheres are also suitable carriers for osteoinductive drugs/growth factors, where release occurs concomitantly with degradation of the hydrogel. Introduction of these microspheres into CPC can alter the release pattern of the cement, which usually shows a marginal release of incorporated drugs. The goal of this study was to determine the in vitro release characteristics of gelatin microsphere CPC. For this, recombinant human TGF-beta1, bFGF, and BMP-2 were labeled with (125)I and loaded onto gelatin type A (porcine, pI = 7.0-9.0)/type B (bovine, pI = 4.5-5.0) microspheres for a short (instant) and longer (prolonged) time before mixing them with the cement. Radioactivity of the resulting 5 or 10 wt % gelatin microsphere CPC composites was monitored for 6 weeks when subjected to proteolytic medium. Drug-loaded CPC was used as control. Results showed that release pattern/efficiency of gelatin microsphere CPCs and CPC controls was highly dependent on the type of growth factor but unaffected by the amount of growth factor. With gelatin microsphere CPC, release was also dependent on the type of gelatin, total volume of incorporated microspheres, and loading method

    Mineralization of hydrogels for bone regeneration.

    Get PDF
    Contains fulltext : 88923.pdf (publisher's version ) (Open Access)Hydrogels are an important class of highly hydrated polymers that are widely investigated for potential use in soft tissue engineering. Generally, however, hydrogels lack the ability to mineralize, preventing the formation of chemical bonds with hard tissues such as bone. A recent trend in tissue engineering involves the development of hydrogels that possess the capacity to mineralize. The strategy that has attracted most interest has been the incorporation of inorganic phases such as calcium phosphate ceramics and bioglasses into hydrogel matrices. These inorganic particles act as nucleation sites that enable further mineralization, thus improving the mechanical properties of the composite material. A second route to create nucleation sites for calcification of hydrogels involves the use of features from the physiological mineralization process. Examples of these biomimetic mineralization strategies include (1) soaking of hydrogels in solutions that are saturated with respect to calcium phosphate, (2) incorporation of enzymes that catalyze deposition of bone mineral, and (3) incorporation of synthetic analogues to matrix vesicles that are the initial sites of biomineralization. Functionalization of the polymeric hydrogel backbone with negatively charged groups is a third mechanism to promote mineralization in otherwise inert hydrogels. This review summarizes the main strategies that have been developed in the past decade to calcify hydrogel matrices and render these hydrogels suitable for applications in bone regeneration.01 december 201

    Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering.

    No full text
    Contains fulltext : 51971.pdf (publisher's version ) (Closed access)In this work, we evaluated the in vitro cytotoxicity and in vivo biocompatibility of a novel poly(propylene fumarate) (PPF)-based/alumoxane nanocomposite for bone tissue engineering applications. The incorporation of functionalized alumoxane nanoparticles into the PPF-based polymer was previously shown to significantly increase the material's flexural mechanical properties. In the current study, samples underwent accelerated in vitro degradation to allow the study of biological responses to these materials over the course of their degradation on a shortened timescale. The polymer, a macrocomposite composed of the polymer and micron-sized particles, and the nanocomposite were evaluated at three stages of degradation for in vitro cytotoxicity with a fibroblast cell line and in vivo soft-tissue response after 3 and 12 weeks of implantation in adult goats. All three material groups experienced mass loss during degradation, but the nanocomposite group eroded significantly faster than the other groups. Nondegraded materials demonstrated minimal cytotoxicity and a minor inflammatory response in soft tissue. On the contrary, predegraded samples elicited more pronounced responses, though these were due to the increase in surface area, surface roughness, and fragmentation associated with the degradation process. The presence of alumoxane nanoparticles in the PPF-based nanocomposite did not significantly affect its cytotoxicity or biocompatibility

    Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.

    No full text
    Contains fulltext : 53564.pdf (publisher's version ) (Closed access)Biodegradable polymers that can be processed into injectable hydrogel matrices are promising candidates for bone-substituting purposes. Furthermore, by incorporating degradable calcium phosphate (CaP) particles and growth factors into these hydrogel matrices, a bone construct can be designed which stimulates the formation of new bone by the surrounding tissue, thereby compensating for the loss of structural integrity of the degrading synthetic bone-substitute. Generally, a major challenge in synthesis of nanoceramic-reinforced polymers is the achievement of a fine dispersion of nanoparticles throughout the polymer, since the unique properties of nanocomposites are lost when nanoparticles aggregate. In the current study, composite hydrogels consisting of oligo(poly(ethylene glycol)fumarate) (OPF) matrices and CaP dispersions of varying crystallinity were successfully developed using physical or chemical preparation strategies. Physical mixing of dried, micrometer-sized CaP powders resulted into formation of irreproducible composites with a highly heterogeneous dispersion of large and agglomerated CaP microparticles throughout the OPF matrix. On the contrary, reproducible and homogeneous hydrogels were fabricated using a chemical mixing strategy, whereby CaP crystals were formed in the presence of dissolved OPF macromers. This co-precipitation technique resulted into a much higher degree of dispersion of the CaP crystals, which can enable higher CaP contents in organic matrices such as OPF. By using these CaP suspensions instead of dried powders, the nanosized structure of separated CaP crystals was preserved, resulting into a higher reactivity of the CaP phase, as indicated by a reduced swelling behavior of these hydrogels. This effect was most likely caused by a physicochemical interaction between Ca(2+) and unreacted COOH end-groups, thereby leading to increased physical cross-linking of the composite hydrogels
    corecore